227 resultados para Heisenberg eredua


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we prove a Lions-type compactness embedding result for symmetric unbounded domains of the Heisenberg group. The natural group action on the Heisenberg group TeX is provided by the unitary group U(n) × {1} and its appropriate subgroups, which will be used to construct subspaces with specific symmetry and compactness properties in the Folland-Stein’s horizontal Sobolev space TeX. As an application, we study the multiplicity of solutions for a singular subelliptic problem by exploiting a technique of solving the Rubik-cube applied to subgroups of U(n) × {1}. In our approach we employ concentration compactness, group-theoretical arguments, and variational methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a modulus method for surface families inside a domain in the Heisenberg group and we prove that the stretch map between two Heisenberg spherical rings is a minimiser for the mean distortion among the class of contact quasiconformal maps between these rings which satisfy certain boundary conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove analogs of classical almost sure dimension theorems for Euclidean projection mappings in the first Heisenberg group, equipped with a sub-Riemannian metric.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the emergence of Heisenberg (Bianchi II) algebra in hyper-Kähler and quaternionic spaces. This is motivated by the rôle these spaces with this symmetry play in N = 2 hypermultiplet scalar manifolds. We show how to construct related pairs of hyper-Kähler and quaternionic spaces under general symmetry assumptions, the former being a zooming-in limit of the latter at vanishing scalar curvature. We further apply this method for the two hyper-Kähler spaces with Heisenberg algebra, which is reduced to U (1) × U (1) at the quaternionic level. We also show that no quaternionic spaces exist with a strict Heisenberg symmetry – as opposed to Heisenberg U (1). We finally discuss the realization of the latter by gauging appropriate Sp(2, 4) generators in N = 2 conformal supergravity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we solve a problem raised by Gutiérrez and Montanari about comparison principles for H−convex functions on subdomains of Heisenberg groups. Our approach is based on the notion of the sub-Riemannian horizontal normal mapping and uses degree theory for set-valued maps. The statement of the comparison principle combined with a Harnack inequality is applied to prove the Aleksandrov-type maximum principle, describing the correct boundary behavior of continuous H−convex functions vanishing at the boundary of horizontally bounded subdomains of Heisenberg groups. This result answers a question by Garofalo and Tournier. The sharpness of our results are illustrated by examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steiner’s tube formula states that the volume of an ϵ-neighborhood of a smooth regular domain in Rn is a polynomial of degree n in the variable ϵ whose coefficients are curvature integrals (also called quermassintegrals). We prove a similar result in the sub-Riemannian setting of the first Heisenberg group. In contrast to the Euclidean setting, we find that the volume of an ϵ-neighborhood with respect to the Heisenberg metric is an analytic function of ϵ that is generally not a polynomial. The coefficients of the series expansion can be explicitly written in terms of integrals of iteratively defined canonical polynomials of just five curvature terms.