60 resultados para Granizo
Resumo:
Dado que la investigación científica es una función ineludible de toda Universidad y que la publicación de sus resultados es la manera de validarlos y difundirlos, la Facultad de Ciencias Agrarias UNCuyo edita semestralmente su Revista para cumplir tales objetivos dentro de las áreas de la Agronomía, la Bromatología, los Recursos naturales renovables y especialidades afines. Los temas de la Revista están esencialmente orientados hacia la información específica, requerida para la repetición y verificación del trabajo por otros investigadores, extensible a docentes, profesionales y autoridades nacionales, provinciales y/o municipales. Además, constituye un instrumento imprescindible para efectuar canje con aprox. 400 organismos de 51 países. El presente número cuenta con artículos relacionados al tema de la contaminación ambiental, plagas en bodegas, granizo, etc.
Resumo:
Se evaluó la influencia de la tela antigranizo en la calidad en cosecha y postcosecha de ciruelas japonesas (Prunus salicina Lindl.) cv. Angeleno. Se cosechó fruta de plantas bajo tela y sin tela en dos fechas. Las determinaciones de madurez y calidad se hicieron en cosecha, después de 45 y 60 días de almacenamiento refrigerado (0 °C y HR = 85 %) y luego de un período de maduración a 20 °C. Parámetros considerados: tamaño, color, firmeza de pulpa, contenido de sólidos solubles, pH, acidez titulable, relación CSS/AT, deshidratación y desórdenes fisiológicos (harinosidad). Se realizó un análisis factorial teniendo en cuenta tela antigranizo (T), fecha de cosecha (F) y período de almacenamiento refrigerado (P). Los factores T y F actuaron sobre el tamaño, color de piel, firmeza de pulpa, CSS, AT y CSS/AT en las evaluaciones realizadas en cosecha. Después del período de maduración, los factores T, F y P tuvieron principalmente efecto en la firmeza de pulpa, AT y CSS/AT. La fecha de cosecha y el período de almacenamiento tuvieron una marcada influencia sobre la incidencia de harinosidad.
Resumo:
El durazno O'Henry para consumo en fresco es una variedades apta para la exportación. Consecuentemente se propone un método sencillo para determinar las pérdidas de calidad que impiden obtener mejores precios en los mercados.. Las mismas se relacionan con una mala gestión en todos los niveles: producción, empaque y comercialización, y la deficiente capacitación del personal involucrado. En la temporada 1999/2000 el granizo fue la causa más frecuente en precosecha; sus marcas explican el 70 % de los frutos con falta de calidad. En cambio, el principal factor en cosecha fueron las picaduras de grafolita, dando 80 % de frutos sin calidad exportable. En galpón de empaque, el mal manejo poscosecha -revelado en machucones, marcas de uñas y rajaduras- originó el 30 % de las causas de no calidad; si se le agregan las picaduras de grafolita, el porcentaje se aproxima al 60 %. Ambas causas pueden minimizarse con buena planificación y capacitación. Con simulación económica se detectó -en la precitada temporada- 20 % de pérdida de calidad de una partida lo cual motiva una disminución superior al 13 % en los ingresos. Esta diferencia depende no sólo del peso relativo de las distintas calidades sino también del precio pactado.
Resumo:
La vitivinicultura mendocina representa más del 50% del PBI Agrícola Nacional; dada la relevancia económica de esta provincia en la industria vitivinícola, y siendo la caída de granizo una contingencia climática determinante en el volumen y calidad (actual y futura) de la producción de Vid, se ha tratado de analizar la factibilidad financiera de la inversión en Malla Antigranizo, la cual busca disminuir los daños, tanto físicos como económicos, en los oasis productivos que conforman esta provincia. Por lo tanto, el propósito del presente trabajo de investigación es brindar una herramienta que permita analizar la factibilidad económica financiera de colocar malla antigranizo en cada uno de los oasis productivos de la provincia de Mendoza. El tipo de inversión en malla antigranizo a analizar será el sistema Grembuile o Guardapolvo, el cual se coloca en el sistema de conducción de vid en espaldero. Esto permitiría al productor de uva decidir colocar o no la malla antigranizo según: el daño promedio de la caída de granizo por oasis, el tipo de uva sobre la cual quiere colocar la protección contra granizo, el precio de comercialización de dicha uva, el rendimiento promedio en kg/ha de la variedad y el oasis en donde se encuentra la superficie cultivada. Para poder abordar entonces esta investigación, se parte de la hipótesis de que no todas las variedades de uva justifican o permiten, desde el punto de vista económico financiero, la colocación de malla antigranizo. Es decir, no todas las variedades de uva justificarían invertir en malla antigranizo.
Resumo:
La provincia de Mendoza es la región vitivinícola más importante de Argentina, representando más del 75% de la producción nacional. Sus condiciones naturales como la altitud (entre 500 y 1500 metros sobre el nivel del mar), aridez y suelos pedregosos y una marcada amplitud térmica entre el día y la noche, son el marco ideal para el cultivo de la vid. En la región Este se encuentra Rivadavia, uno de los departamentos con mayor ubicación a la viticultura del ámbito provincial. Si bien se está reconvirtiendo paulatinamente el área de plantación de vid, desde las criollas a las finas, en Rivadavia predominan los grandes volúmenes (Fundación ProMendoza, 2013). La actividad vitícola en el distrito Los Campamentos, Rivadavia, se encuentra castigada por factores de riesgo climático como son el granizo y las heladas, además el calentamiento global ha afectado la cantidad de agua en Mendoza, elemento fundamental para el desarrollo de los viñedos. Estas problemáticas hacen que el viñatero se vea obligado a evaluar, con vistas al largo plazo, alternativas de inversión que le permitan disminuir estos riesgos y un mejor aprovechamiento del agua. En principio la finca, en la que hemos de centrar nuestro trabajo, está ubicada en una zona que era rica en agua pero con alto riesgo de granizo. Hoy la realidad es otra, el riesgo de granizo subsiste pero se enfrentan problemas de insuficiencia de agua debido a la disminución de la dotación, al agotamiento de las napas menos profundas y el alto costo de realizar perforaciones. Además son problemas que envuelven también la cuestión lo referido a los beneficios, gastos de la inversión, costos que se deja de erogar al aplicar las distintas alternativas, qué herramientas existen para hacer frente al granizo y a la escasez de agua, cómo puede el viñatero financiar los proyectos, cuál será el periodo de recuperación de la inversión y cuál será la vida útil del bien en el cual se invierta.
Resumo:
Desde el curso académico 2008/2009 el Proyecto Mentor de la Escuela Universitaria de Ingeniería Técnica Industrial (EUITI) de la UPM [1] participa en distintas acciones de acogida de los alumnos de nuevo ingreso propio del centro. Estas actividades son el primer contacto de los mentores con los alumnos de nuevo ingreso y además son reforzadas por el apoyo y experiencia de los tutores y mentores del curso anterior, favoreciendo la interrelación de alumnos de distintos cursos y especialidades. Para la correcta realización de estas actividades, los alumnos mentores reciben un intensivo programa de formación que incluye aspectos psicosociales propios de la mentoría [2]. La presente comunicación tiene el propósito de describir dichas acciones así como presentar y valorar los resultados obtenidos a través de la encuesta
Resumo:
In order to achieve total selectivity at electrical distribution networks it is of great importance to analyze the defect currents at ungrounded power systems. This information will help to grant selectivity at electrical distribution networks ensuring that only the defect line or feeder is removed from service. In the present work a new selective and directional protection method for ungrounded power systems is evaluated. The new method measures only defect currents to detect earth faults and works with a directional criterion to determine the line under faulty conditions. The main contribution of this new technique is that it can detect earth faults in outgoing lines at any type of substation avoiding the possible mismatch of traditional directional earth fault relays. This detection technique is based on the comparison of the direction of a reference current to the direction of all earth fault capacitive currents at all the feeders connected to the same bus bars. This new method has been validated through computer simulations. The results for the different cases studied are remarkable, proving total validity and usefulness of the new method.
Resumo:
La puesta en marcha de las titulaciones adaptadas al RD 1393/2007 constituía la oportunidad largamente esperada de implementar una serie de proyectos ilusionantes asociados a la Declaración de Bolonia y a su “nebulosa”. Entre ellos, la mejora del rendimiento en la Acción Tutorial constituye, para la UPM, uno de los aspectos prioritarios. En ese ámbito, la E.U. de Ingeniería Técnica Industrial ha desarrollado, desde el curso 2010/2011, un proyecto denominado “La Hora TutHora”, cuyo objetivo consiste en actuar desde Ordenación Académica para favorecer la mencionada Acción Tutorial. Este artículo expone los resultados que han podido medirse tras dos años de vida del proyecto, las conclusiones que pueden obtenerse y el planteamiento de propuestas de mejora.
Resumo:
La reciente puesta en marcha de las titulaciones adaptadas al RD 1393/2007 constituía la oportunidad largamente esperada de implementar una serie de proyectos ilusionantes asociados a la Declaración de Bolonia y a su “nebulosa”. Entre ellos, la mejora del rendimiento en la Acción Tutorial constituye, para la UPM, uno de los aspectos prioritarios. En ese ámbito, la E.U. de Ingeniería Técnica Industrial ha desarrollado, desde el curso 2010/2011, un proyecto denominado “La Hora TutHora”, cuyo objetivo consiste en actuar desde Ordenación Académica para favorecer la mencionada Acción Tutorial. Este artículo expone los resultados que han podido medirse tras un año de vida del proyecto.
Resumo:
The generator differential protection is one of the most important electrical protections of synchronous generator stator windings. Its operation principle is based on the comparison of the input current and output current at each phase winding. Unwanted trip commands are usually caused by CT saturation, wrong CT selection, or the fact that they may come from different manufacturers. In generators grounded through high impedance, only phase-to-phase or three-phase faults can be detected by the differential protection. This kind of fault causes differential current to flow in, at least, two phases of the winding. Several cases of unwanted trip commands caused by the appearance of differential current in only one phase of the generator have been reported. In this paper multi-phase criterion is proposed for generator differential protection algorithm when applied to high impedance grounded generators.
Resumo:
Los fenómenos dinámicos pueden poner en peligro la integridad de estructuras aeroespaciales y los ingenieros han desarrollado diferentes estrategias para analizarlos. Uno de los grandes problemas que se plantean en la ingeniería es cómo atacar un problema dinámico estructural. En la presente tesis se plantean distintos fenómenos dinámicos y se proponen métodos para estimar o simular sus comportamientos mediante un análisis paramétrico determinista y aleatorio del problema. Se han propuesto desde problemas sencillos con pocos grados de libertad que sirven para analizar las diferentes estrategias y herramientas a utilizar, hasta fenómenos muy dinámicos que contienen comportamientos no lineales, daños y fallos. Los primeros ejemplos de investigación planteados cubren una amplia gama de los fenómenos dinámicos, como el análisis de vibraciones de elementos másicos, incluyendo impactos y contactos, y el análisis de una viga con carga armónica aplicada a la que también se le añaden parámetros aleatorios que pueden responder a un desconocimiento o incertidumbre de los mismos. Durante el desarrollo de la tesis se introducen conceptos y se aplican distintos métodos, como el método de elementos finitos (FEM) en el que se analiza su resolución tanto por esquemas implícitos como explícitos, y métodos de análisis paramétricos y estadísticos mediante la técnica de Monte Carlo. Más adelante, una vez ya planteadas las herramientas y estrategias de análisis, se estudian fenómenos más complejos, como el impacto a baja velocidad en materiales compuestos, en el que se busca evaluar la resistencia residual y, por lo tanto, la tolerancia al daño de la estructura. Se trata de un suceso que puede producirse por la caída de herramienta, granizo o restos en la pista de aterrizaje. Otro de los fenómenos analizados también se da en un aeropuerto y se trata de la colisión con un dispositivo frangible, el cual tiene que romperse bajo ciertas cargas y, sin embargo, soportar otras. Finalmente, se aplica toda la metodología planteada en simular y analizar un posible incidente en vuelo, el fenómeno de la pérdida de pala de un turbohélice. Se trata de un suceso muy particular en el que la estructura tiene que soportar unas cargas complejas y excepcionales con las que la aeronave debe ser capaz de completar con éxito el vuelo. El análisis incluye comportamientos no lineales, daños, y varios tipos de fallos, y en el que se trata de identificar los parámetros clave en la secuencia del fallo. El suceso se analiza mediante análisis estructurales deterministas más habituales y también mediante otras técnicas como el método de Monte Carlo con el que se logran estudiar distintas incertidumbres en los parámetros con variables aleatorias. Se estudian, entre otros, el tamaño de pala perdida, la velocidad y el momento en el que se produce la rotura, y la rigidez y resistencia de los apoyos del motor. Se tiene en cuenta incluso el amortiguamiento estructural del sistema. Las distintas estrategias de análisis permiten obtener unos resultados valiosos e interesantes que han sido objeto de distintas publicaciones. ABSTRACT Dynamic phenomena can endanger the integrity of aerospace structures and, consequently, engineers have developed different strategies to analyze them. One of the major engineering problems is how to deal with the structural dynamics. In this thesis, different dynamic phenomena are introduced and several methods are proposed to estimate or simulate their behaviors. The analysis is considered through parametric, deterministic and statistical methods. The suggested issues are from simple problems with few degrees of freedom, in order to develop different strategies and tools to solve them, to very dynamic phenomena containing nonlinear behaviors failures, damages. The first examples cover a wide variety of dynamic phenomena such as vibration analysis of mass elements, including impacts and contacts, and beam analysis with harmonic load applied, in which random parameters are included. These parameters can represent the unawareness or uncertainty of certain variables. During the development of the thesis several concepts are introduced and different methods are applied, such as the finite element method (FEM), which is solved through implicit and explicit schemes, and parametrical and statistical methods using the Monte Carlo analysis technique. Next, once the tools and strategies of analysis are set out more complex phenomena are studied. This is the case of a low-speed impact in composite materials, the residual strength of the structure is evaluated, and therefore, its damage tolerance. This incident may occur from a tool dropped, hail or debris throw on the runway. At an airport may also occur, and it is also analyzed, a collision between an airplane and a frangible device. The devise must brake under these loads, however, it must withstand others. Finally, all the considered methodology is applied to simulate and analyze a flight incident, the blade loss phenomenon of a turboprop. In this particular event the structure must support complex and exceptional loads and the aircraft must be able to successfully complete the flight. Nonlinear behavior, damage, and different types of failures are included in the analysis, in which the key parameters in the failure sequence are identified. The incident is analyzed by deterministic structural analysis and also by other techniques such as Monte Carlo method, in which it is possible to include different parametric uncertainties through random variables. Some of the evaluated parameters are, among others, the blade loss size, propeller rotational frequency, speed and angular position where the blade is lost, and the stiffness and strength of the engine mounts. The study does also research on the structural damping of the system. The different strategies of analysis obtain valuable and interesting results that have been already published.
Resumo:
Hoy en día, el proceso de un proyecto sostenible persigue realizar edificios de elevadas prestaciones que son, energéticamente eficientes, saludables y económicamente viables utilizando sabiamente recursos renovables para minimizar el impacto sobre el medio ambiente reduciendo, en lo posible, la demanda de energía, lo que se ha convertido, en la última década, en una prioridad. La Directiva 2002/91/CE "Eficiencia Energética de los Edificios" (y actualizaciones posteriores) ha establecido el marco regulatorio general para el cálculo de los requerimientos energéticos mínimos. Desde esa fecha, el objetivo de cumplir con las nuevas directivas y protocolos ha conducido las políticas energéticas de los distintos países en la misma dirección, centrándose en la necesidad de aumentar la eficiencia energética en los edificios, la adopción de medidas para reducir el consumo, y el fomento de la generación de energía a través de fuentes renovables. Los edificios de energía nula o casi nula (ZEB, Zero Energy Buildings ó NZEB, Net Zero Energy Buildings) deberán convertirse en un estándar de la construcción en Europa y con el fin de equilibrar el consumo de energía, además de reducirlo al mínimo, los edificios necesariamente deberán ser autoproductores de energía. Por esta razón, la envolvente del edifico y en particular las fachadas son importantes para el logro de estos objetivos y la tecnología fotovoltaica puede tener un papel preponderante en este reto. Para promover el uso de la tecnología fotovoltaica, diferentes programas de investigación internacionales fomentan y apoyan soluciones para favorecer la integración completa de éstos sistemas como elementos arquitectónicos y constructivos, los sistemas BIPV (Building Integrated Photovoltaic), sobre todo considerando el próximo futuro hacia edificios NZEB. Se ha constatado en este estudio que todavía hay una falta de información útil disponible sobre los sistemas BIPV, a pesar de que el mercado ofrece una interesante gama de soluciones, en algunos aspectos comparables a los sistemas tradicionales de construcción. Pero por el momento, la falta estandarización y de una regulación armonizada, además de la falta de información en las hojas de datos técnicos (todavía no comparables con las mismas que están disponibles para los materiales de construcción), hacen difícil evaluar adecuadamente la conveniencia y factibilidad de utilizar los componentes BIPV como parte integrante de la envolvente del edificio. Organizaciones internacionales están trabajando para establecer las normas adecuadas y procedimientos de prueba y ensayo para comprobar la seguridad, viabilidad y fiabilidad estos sistemas. Sin embargo, hoy en día, no hay reglas específicas para la evaluación y caracterización completa de un componente fotovoltaico de integración arquitectónica de acuerdo con el Reglamento Europeo de Productos de la Construcción, CPR 305/2011. Los productos BIPV, como elementos de construcción, deben cumplir con diferentes aspectos prácticos como resistencia mecánica y la estabilidad; integridad estructural; seguridad de utilización; protección contra el clima (lluvia, nieve, viento, granizo), el fuego y el ruido, aspectos que se han convertido en requisitos esenciales, en la perspectiva de obtener productos ambientalmente sostenibles, saludables, eficientes energéticamente y económicamente asequibles. Por lo tanto, el módulo / sistema BIPV se convierte en una parte multifuncional del edificio no sólo para ser física y técnicamente "integrado", además de ser una oportunidad innovadora del diseño. Las normas IEC, de uso común en Europa para certificar módulos fotovoltaicos -IEC 61215 e IEC 61646 cualificación de diseño y homologación del tipo para módulos fotovoltaicos de uso terrestre, respectivamente para módulos fotovoltaicos de silicio cristalino y de lámina delgada- atestan únicamente la potencia del módulo fotovoltaico y dan fe de su fiabilidad por un período de tiempo definido, certificando una disminución de potencia dentro de unos límites. Existe también un estándar, en parte en desarrollo, el IEC 61853 (“Ensayos de rendimiento de módulos fotovoltaicos y evaluación energética") cuyo objetivo es la búsqueda de procedimientos y metodologías de prueba apropiados para calcular el rendimiento energético de los módulos fotovoltaicos en diferentes condiciones climáticas. Sin embargo, no existen ensayos normalizados en las condiciones específicas de la instalación (p. ej. sistemas BIPV de fachada). Eso significa que es imposible conocer las efectivas prestaciones de estos sistemas y las condiciones ambientales que se generan en el interior del edificio. La potencia nominal de pico Wp, de un módulo fotovoltaico identifica la máxima potencia eléctrica que éste puede generar bajo condiciones estándares de medida (STC: irradición 1000 W/m2, 25 °C de temperatura del módulo y distribución espectral, AM 1,5) caracterizando eléctricamente el módulo PV en condiciones específicas con el fin de poder comparar los diferentes módulos y tecnologías. El vatio pico (Wp por su abreviatura en inglés) es la medida de la potencia nominal del módulo PV y no es suficiente para evaluar el comportamiento y producción del panel en términos de vatios hora en las diferentes condiciones de operación, y tampoco permite predecir con convicción la eficiencia y el comportamiento energético de un determinado módulo en condiciones ambientales y de instalación reales. Un adecuado elemento de integración arquitectónica de fachada, por ejemplo, debería tener en cuenta propiedades térmicas y de aislamiento, factores como la transparencia para permitir ganancias solares o un buen control solar si es necesario, aspectos vinculados y dependientes en gran medida de las condiciones climáticas y del nivel de confort requerido en el edificio, lo que implica una necesidad de adaptación a cada contexto específico para obtener el mejor resultado. Sin embargo, la influencia en condiciones reales de operación de las diferentes soluciones fotovoltaicas de integración, en el consumo de energía del edificio no es fácil de evaluar. Los aspectos térmicos del interior del ambiente o de iluminación, al utilizar módulos BIPV semitransparentes por ejemplo, son aún desconocidos. Como se dijo antes, la utilización de componentes de integración arquitectónica fotovoltaicos y el uso de energía renovable ya es un hecho para producir energía limpia, pero también sería importante conocer su posible contribución para mejorar el confort y la salud de los ocupantes del edificio. Aspectos como el confort, la protección o transmisión de luz natural, el aislamiento térmico, el consumo energético o la generación de energía son aspectos que suelen considerarse independientemente, mientras que todos juntos contribuyen, sin embargo, al balance energético global del edificio. Además, la necesidad de dar prioridad a una orientación determinada del edificio, para alcanzar el mayor beneficio de la producción de energía eléctrica o térmica, en el caso de sistemas activos y pasivos, respectivamente, podría hacer estos últimos incompatibles, pero no necesariamente. Se necesita un enfoque holístico que permita arquitectos e ingenieros implementar sistemas tecnológicos que trabajen en sinergia. Se ha planteado por ello un nuevo concepto: "C-BIPV, elemento fotovoltaico consciente integrado", esto significa necesariamente conocer los efectos positivos o negativos (en términos de confort y de energía) en condiciones reales de funcionamiento e instalación. Propósito de la tesis, método y resultados Los sistemas fotovoltaicos integrados en fachada son a menudo soluciones de vidrio fácilmente integrables, ya que por lo general están hechos a medida. Estos componentes BIPV semitransparentes, integrados en el cerramiento proporcionan iluminación natural y también sombra, lo que evita el sobrecalentamiento en los momentos de excesivo calor, aunque como componente estático, asimismo evitan las posibles contribuciones pasivas de ganancias solares en los meses fríos. Además, la temperatura del módulo varía considerablemente en ciertas circunstancias influenciada por la tecnología fotovoltaica instalada, la radiación solar, el sistema de montaje, la tipología de instalación, falta de ventilación, etc. Este factor, puede suponer un aumento adicional de la carga térmica en el edificio, altamente variable y difícil de cuantificar. Se necesitan, en relación con esto, más conocimientos sobre el confort ambiental interior en los edificios que utilizan tecnologías fotovoltaicas integradas, para abrir de ese modo, una nueva perspectiva de la investigación. Con este fin, se ha diseñado, proyectado y construido una instalación de pruebas al aire libre, el BIPV Env-lab "BIPV Test Laboratory", para la caracterización integral de los diferentes módulos semitransparentes BIPV. Se han definido también el método y el protocolo de ensayos de caracterización en el contexto de un edificio y en condiciones climáticas y de funcionamiento reales. Esto ha sido posible una vez evaluado el estado de la técnica y la investigación, los aspectos que influyen en la integración arquitectónica y los diferentes tipos de integración, después de haber examinado los métodos de ensayo para los componentes de construcción y fotovoltaicos, en condiciones de operación utilizadas hasta ahora. El laboratorio de pruebas experimentales, que consiste en dos habitaciones idénticas a escala real, 1:1, ha sido equipado con sensores y todos los sistemas de monitorización gracias a los cuales es posible obtener datos fiables para evaluar las prestaciones térmicas, de iluminación y el rendimiento eléctrico de los módulos fotovoltaicos. Este laboratorio permite el estudio de tres diferentes aspectos que influencian el confort y consumo de energía del edificio: el confort térmico, lumínico, y el rendimiento energético global (demanda/producción de energía) de los módulos BIPV. Conociendo el balance de energía para cada tecnología solar fotovoltaica experimentada, es posible determinar cuál funciona mejor en cada caso específico. Se ha propuesto una metodología teórica para la evaluación de estos parámetros, definidos en esta tesis como índices o indicadores que consideran cuestiones relacionados con el bienestar, la energía y el rendimiento energético global de los componentes BIPV. Esta metodología considera y tiene en cuenta las normas reglamentarias y estándares existentes para cada aspecto, relacionándolos entre sí. Diferentes módulos BIPV de doble vidrio aislante, semitransparentes, representativos de diferentes tecnologías fotovoltaicas (tecnología de silicio monocristalino, m-Si; de capa fina en silicio amorfo unión simple, a-Si y de capa fina en diseleniuro de cobre e indio, CIS) fueron seleccionados para llevar a cabo una serie de pruebas experimentales al objeto de demostrar la validez del método de caracterización propuesto. Como resultado final, se ha desarrollado y generado el Diagrama Caracterización Integral DCI, un sistema gráfico y visual para representar los resultados y gestionar la información, una herramienta operativa útil para la toma de decisiones con respecto a las instalaciones fotovoltaicas. Este diagrama muestra todos los conceptos y parámetros estudiados en relación con los demás y ofrece visualmente toda la información cualitativa y cuantitativa sobre la eficiencia energética de los componentes BIPV, por caracterizarlos de manera integral. ABSTRACT A sustainable design process today is intended to produce high-performance buildings that are energy-efficient, healthy and economically feasible, by wisely using renewable resources to minimize the impact on the environment and to reduce, as much as possible, the energy demand. In the last decade, the reduction of energy needs in buildings has become a top priority. The Directive 2002/91/EC “Energy Performance of Buildings” (and its subsequent updates) established a general regulatory framework’s methodology for calculation of minimum energy requirements. Since then, the aim of fulfilling new directives and protocols has led the energy policies in several countries in a similar direction that is, focusing on the need of increasing energy efficiency in buildings, taking measures to reduce energy consumption, and fostering the use of renewable sources. Zero Energy Buildings or Net Zero Energy Buildings will become a standard in the European building industry and in order to balance energy consumption, buildings, in addition to reduce the end-use consumption should necessarily become selfenergy producers. For this reason, the façade system plays an important role for achieving these energy and environmental goals and Photovoltaic can play a leading role in this challenge. To promote the use of photovoltaic technology in buildings, international research programs encourage and support solutions, which favors the complete integration of photovoltaic devices as an architectural element, the so-called BIPV (Building Integrated Photovoltaic), furthermore facing to next future towards net-zero energy buildings. Therefore, the BIPV module/system becomes a multifunctional building layer, not only physically and functionally “integrated” in the building, but also used as an innovative chance for the building envelope design. It has been found in this study that there is still a lack of useful information about BIPV for architects and designers even though the market is providing more and more interesting solutions, sometimes comparable to the existing traditional building systems. However at the moment, the lack of an harmonized regulation and standardization besides to the non-accuracy in the technical BIPV datasheets (not yet comparable with the same ones available for building materials), makes difficult for a designer to properly evaluate the fesibility of this BIPV components when used as a technological system of the building skin. International organizations are working to establish the most suitable standards and test procedures to check the safety, feasibility and reliability of BIPV systems. Anyway, nowadays, there are no specific rules for a complete characterization and evaluation of a BIPV component according to the European Construction Product Regulation, CPR 305/2011. BIPV products, as building components, must comply with different practical aspects such as mechanical resistance and stability; structural integrity; safety in use; protection against weather (rain, snow, wind, hail); fire and noise: aspects that have become essential requirements in the perspective of more and more environmentally sustainable, healthy, energy efficient and economically affordable products. IEC standards, commonly used in Europe to certify PV modules (IEC 61215 and IEC 61646 respectively crystalline and thin-film ‘Terrestrial PV Modules-Design Qualification and Type Approval’), attest the feasibility and reliability of PV modules for a defined period of time with a limited power decrease. There is also a standard (IEC 61853, ‘Performance Testing and Energy Rating of Terrestrial PV Modules’) still under preparation, whose aim is finding appropriate test procedures and methodologies to calculate the energy yield of PV modules under different climate conditions. Furthermore, the lack of tests in specific conditions of installation (e.g. façade BIPV devices) means that it is difficult knowing the exact effective performance of these systems and the environmental conditions in which the building will operate. The nominal PV power at Standard Test Conditions, STC (1.000 W/m2, 25 °C temperature and AM 1.5) is usually measured in indoor laboratories, and it characterizes the PV module at specific conditions in order to be able to compare different modules and technologies on a first step. The “Watt-peak” is not enough to evaluate the panel performance in terms of Watt-hours of various modules under different operating conditions, and it gives no assurance of being able to predict the energy performance of a certain module at given environmental conditions. A proper BIPV element for façade should take into account thermal and insulation properties, factors as transparency to allow solar gains if possible or a good solar control if necessary, aspects that are linked and high dependent on climate conditions and on the level of comfort to be reached. However, the influence of different façade integrated photovoltaic solutions on the building energy consumption is not easy to assess under real operating conditions. Thermal aspects, indoor temperatures or luminance level that can be expected using building integrated PV (BIPV) modules are not well known. As said before, integrated photovoltaic BIPV components and the use of renewable energy is already a standard for green energy production, but would also be important to know the possible contribution to improve the comfort and health of building occupants. Comfort, light transmission or protection, thermal insulation or thermal/electricity power production are aspects that are usually considered alone, while all together contribute to the building global energy balance. Besides, the need to prioritize a particular building envelope orientation to harvest the most benefit from the electrical or thermal energy production, in the case of active and passive systems respectively might be not compatible, but also not necessary. A holistic approach is needed to enable architects and engineers implementing technological systems working in synergy. A new concept have been suggested: “C-BIPV, conscious integrated BIPV”. BIPV systems have to be “consciously integrated” which means that it is essential to know the positive and negative effects in terms of comfort and energy under real operating conditions. Purpose of the work, method and results The façade-integrated photovoltaic systems are often glass solutions easily integrable, as they usually are custommade. These BIPV semi-transparent components integrated as a window element provides natural lighting and shade that prevents overheating at times of excessive heat, but as static component, likewise avoid the possible solar gains contributions in the cold months. In addition, the temperature of the module varies considerably in certain circumstances influenced by the PV technology installed, solar radiation, mounting system, lack of ventilation, etc. This factor may result in additional heat input in the building highly variable and difficult to quantify. In addition, further insights into the indoor environmental comfort in buildings using integrated photovoltaic technologies are needed to open up thereby, a new research perspective. This research aims to study their behaviour through a series of experiments in order to define the real influence on comfort aspects and on global energy building consumption, as well as, electrical and thermal characteristics of these devices. The final objective was to analyze a whole set of issues that influence the global energy consumption/production in a building using BIPV modules by quantifying the global energy balance and the BIPV system real performances. Other qualitative issues to be studied were comfort aspect (thermal and lighting aspects) and the electrical behaviour of different BIPV technologies for vertical integration, aspects that influence both energy consumption and electricity production. Thus, it will be possible to obtain a comprehensive global characterization of BIPV systems. A specific design of an outdoor test facility, the BIPV Env-lab “BIPV Test Laboratory”, for the integral characterization of different BIPV semi-transparent modules was developed and built. The method and test protocol for the BIPV characterization was also defined in a real building context and weather conditions. This has been possible once assessed the state of the art and research, the aspects that influence the architectural integration and the different possibilities and types of integration for PV and after having examined the test methods for building and photovoltaic components, under operation conditions heretofore used. The test laboratory that consists in two equivalent test rooms (1:1) has a monitoring system in which reliable data of thermal, daylighting and electrical performances can be obtained for the evaluation of PV modules. The experimental set-up facility (testing room) allows studying three different aspects that affect building energy consumption and comfort issues: the thermal indoor comfort, the lighting comfort and the energy performance of BIPV modules tested under real environmental conditions. Knowing the energy balance for each experimented solar technology, it is possible to determine which one performs best. A theoretical methodology has been proposed for evaluating these parameters, as defined in this thesis as indices or indicators, which regard comfort issues, energy and the overall performance of BIPV components. This methodology considers the existing regulatory standards for each aspect, relating them to one another. A set of insulated glass BIPV modules see-through and light-through, representative of different PV technologies (mono-crystalline silicon technology, mc-Si, amorphous silicon thin film single junction, a-Si and copper indium selenide thin film technology CIS) were selected for a series of experimental tests in order to demonstrate the validity of the proposed characterization method. As result, it has been developed and generated the ICD Integral Characterization Diagram, a graphic and visual system to represent the results and manage information, a useful operational tool for decision-making regarding to photovoltaic installations. This diagram shows all concepts and parameters studied in relation to each other and visually provides access to all the results obtained during the experimental phase to make available all the qualitative and quantitative information on the energy performance of the BIPV components by characterizing them in a comprehensive way.
Resumo:
This paper presents a new selective and non-directional protection method to detect ground faults in neutral isolated power systems. The new proposed method is based on the comparison of the rms value of the residual current of all the lines connected to a bus, and it is able to determine the line with ground defect. Additionally, this method can be used for the protection of secondary substation. This protection method avoids the unwanted trips produced by wrong settings or wiring errors, which sometimes occur in the existing directional ground fault protections. This new method has been validated through computer simulations and experimental laboratory tests.
Resumo:
The location of ground faults in railway electric lines in 2 × 5 kV railway power supply systems is a difficult task. In both 1 × 25 kV and transmission power systems it is common practice to use distance protection relays to clear ground faults and localize their positions. However, in the particular case of this 2 × 25 kV system, due to the widespread use of autotransformers, the relation between the distance and the impedance seen by the distance protection relays is not linear and therefore the location is not accurate enough. This paper presents a simple and economical method to identify the subsection between autotransformers and the conductor (catenary or feeder) where the ground fault is happening. This method is based on the comparison of the angle between the current and the voltage of the positive terminal in each autotransformer. Consequently, after the identification of the subsection and the conductor with the ground defect, only the subsection where the ground fault is present will be quickly removed from service, with the minimum effect on rail traffic. This method has been validated through computer simulations and laboratory tests with positive results.
Resumo:
Mode of access: Internet.