478 resultados para GAAS HETEROSTRUCTURES
Resumo:
The oxidation of GaAs and AlxGa1−xAs targets by oxygen irradiation has been studied in detail. It was found that the oxidation process is characterized by the strong preferential oxidation of Al as compared to Ga, and of Ga as compared to As. This experimental observation, which has been accurately quantified by using x‐ray photoelectron spectroscopy, is connected to the different heats of formation of the corresponding oxides. The oxide grown by ion beam oxidation shows a strong depletion in As and relatively low oxidation of As as well. The depletion can be associated with the preferential sputtering of the As oxide in respect to other compounds whereas the low oxidation is due to the low heat of formation. In contrast Al is rapidly and fully oxidized, turning the outermost layer of the altered layer to a single Al2O3 overlayer, as observed by transmission electron microscopy. The radiation enhanced diffusion of oxygen and aluminum in the altered layer explains the large thickness of these altered layers and the formation of Al oxides on top of the layers. For the case of ion‐beam oxidation of GaAs a simulation program has been developed which describes adequately the various growth mechanisms experimentally observed
Resumo:
We present tunneling experiments on Fe~001!/MgO~20 Å!/FeCo~001! single-crystal epitaxial junctions of high quality grown by sputtering and laser ablation. Tunnel magnetoresistance measurements give 60% at 30 K, to be compared with 13% obtained recently on ~001!-oriented Fe/amorphous-Al2O3 /FeCo tunnel junctions. This difference demonstrates that the spin polarization of tunneling electrons is not directly related to the density of states of the free metal surface Fe~001! in this case but depends on the actual electronic structure of the entire electrode/barrier system.
Resumo:
The goal of the thesis was to study fundamental structural and optical properties of InAs islands and In(Ga)As quantum rings. The research was carried out at the Department of Micro and Nanosciences of Helsinki University of Technology. A good surface quality can be essential for the potential applications in optoelectronic devices. For such device applications it is usually necessary to control size, density and arrangement of the islands. In order to study the dependence of the structural properties of the islands and the quantum rings on growth conditions, atomic force microscope was used. Obtained results reveal that the size and the density of the In(Ga)As quantum rings strongly depend on the growth temperature, the annealing time and the thickness of the partial capping layer. From obtained results it is possible to conclude that to get round shape islands and high density one has to use growth temperature of 500 ̊C. In the case of formation of In(Ga)As quantum rings the effect of mobility anisotropy is observed that so the shape of the rings is not symmetric. To exclude this effect it is preferable to use a higher annealing temperature of 570 ̊C. Optical properties were characterized by PL spectroscopy. PL emission was observed from buried InAs quantum dots and In(Ga)As quantum rings grown with different annealing time and temperature and covered with a various thickness of the partial capping layer.
Resumo:
In this thesis is studied the influence of uniaxial deformation of GaAs/AlGaAs quantum well structures to photoluminescence. Uniaxial deformation was applied along [110] and polarization ratio of photoluminescence at T = 77 K and 300 K was measured. Also the physical origin of photoluminescence lines in spectrum was determined and the energy band splitting value between states of heavy and light holes was estimated. It was found that the dependencies of polarization ratio on uniaxial deformation for bulk GaAs and GaAs/AlGaAs are different. Two observed lines in photoluminescence spectrum are induced by free electron recombination to energy sublevels of valence band corresponding to heavy and light holes. Those sublevels are splited due to the combination of size quantization and external pressure. The quantum splitting energy value was estimated. Also was shown a method, which allows to determine the energy splitting value of sublevels at room temperature and at comparatively low uniaxial deformation, when the other method for determining of the splitting becomes impossible.
Resumo:
The origin of the microscopic inhomogeneities in InxGa1-xAs layers grown on GaAs by molecular beam epitaxy is analyzed through the optical absorption spectra near the band gap. It is seen that, for relaxed thick layers of about 2.8μm, composition inhomogeneities are responsible for the band edge smoothing into the whole compositional range (0.05
Resumo:
This work devotes to the theoretical investigations of spin-electromagnetic waves (SEW) propagating in a thin-film multiferroic structures that were composed of a slot-line and structures with several ferrite films. In contrast to earlier works, the spin-electromagnetic waves in the investigated structures are originated from two different electrodynamics coupling. The first one is coupling of the electromagnetic wave localized mainly in the slot-line with the spin wave excited mostly in the ferrite film. The second one is coupling of two spin waves in the different ferrite films separated by a thin ferroelectric film. For theoretical analysis of SEWs propagation in such kind of structures theories of their eigen-wave spectra were developed. Spectra of SEW in the investigated structures were calculated and analyzed. The range of electric and magnetic tunability of dispersion characteristic were investigated. Spectra of SEW in the investigated multiferroic structures are used for investigation of transfer function of periodic structures.
Resumo:
In this paper, we report the in-plane and cross-plane measurements of the thermal diffusivity of double epitaxial layers of n-type GaAs doped with various concentrations of Si and a p-type Be-doped GaAs layer grown on a GaAs substrate by the molecular beam epitaxial method, using the laser-induced nondestructive photothermal deflection technique. The thermal diffusivity value is evaluated from the slope of the graph of the phase of the photothermal deflection signal as a function of pump-probe offset. Analysis of the data shows that the cross-plane thermal diffusivity is less than that of the in-plane thermal diffusivity. It is also seen that the doping concentration has a great influence on the thermal diffusivity value. Measurement of p-type Be-doped samples shows that the nature of the dopant also influences the effective thermal diffusivity value. The results are interpreted in terms of a phonon-assisted heat transfer mechanism and the various scattering process involved in the propagation of phonons.
Resumo:
In this paper, we report the in-plane and cross-plane measurements of the thermal diffusivity of double epitaxial layers of n-type GaAs doped with various concentrations of Si and a p-type Be-doped GaAs layer grown on a GaAs substrate by the molecular beam epitaxial method, using the laser-induced nondestructive photothermal deflection technique. The thermal diffusivity value is evaluated from the slope of the graph of the phase of the photothermal deflection signal as a function of pump-probe offset. Analysis of the data shows that the cross-plane thermal diffusivity is less than that of the in-plane thermal diffusivity. It is also seen that the doping concentration has a great influence on the thermal diffusivity value. Measurement of p-type Be-doped samples shows that the nature of the dopant also influences the effective thermal diffusivity value. The results are interpreted in terms of a phonon-assisted heat transfer mechanism and the various scattering process involved in the propagation of phonons
Resumo:
In this paper, we report the in-plane and cross-plane measurements of the thermal diffusivity of double epitaxial layers of n-type GaAs doped with various concentrations of Si and a p-type Be-doped GaAs layer grown on a GaAs substrate by the molecular beam epitaxial method, using the laser-induced nondestructive photothermal deflection technique. The thermal diffusivity value is evaluated from the slope of the graph of the phase of the photothermal deflection signal as a function of pump-probe offset. Analysis of the data shows that the cross-plane thermal diffusivity is less than that of the in-plane thermal diffusivity. It is also seen that the doping concentration has a great influence on the thermal diffusivity value. Measurement of p-type Be-doped samples shows that the nature of the dopant also influences the effective thermal diffusivity value. The results are interpreted in terms of a phonon-assisted heat transfer mechanism and the various scattering process involved in the propagation of phonons
Resumo:
Photothermal beam deflection studies were carried out with GaAs epitaxial double layers grown on semi-insulating GaAs substrates. The impurity densities in thin epitaxial layers were found to influence the effective thermal diffusivity of the entire structure.
Resumo:
We report a photoacoustic (PA) study of the thermal and transport properties of a GaAs epitaxial layer doped with Si at varying doping concentration, grown on GaAs substrate by molecular beam epitaxy. The data are analyzed on the basis of Rosencwaig and Gersho’s theory of the PA effect. The amplitude of the PA signal gives information about various heat generation mechanisms in semiconductors. The experimental data obtained from the measurement of the PA signal as a function of modulation frequency in a heat transmission configuration were fitted with the phase of PA signal obtained from the theoretical model evaluated by considering four parameters—viz., thermal diffusivity, diffusion coefficient, nonradiative recombination time, and surface recombination velocity—as adjustable parameters. It is seen from the analysis that the photoacoustic technique is sensitive to the changes in the surface states depend on the doping concentration. The study demonstrates the effectiveness of the photoacoustic technique as a noninvasive and nondestructive method to measure and evaluate the thermal and transport properties of epitaxial layers.
Resumo:
The photoacoustic technique under heat transmission configuration is used to determine the effect of doping on both the thermal and transport properties of p- and n-type GaAs epitaxial layers grown on GaAs substrate by the molecular beam epitaxial method. Analysis of the data is made on the basis of the theoretical model of Rosencwaig and Gersho. Thermal and transport properties of the epitaxial layers are found by fitting the phase of the experimentally obtained photoacoustic signal with that of the theoretical model. It is observed that both the thermal and transport properties, i.e. thermal diffusivity, diffusion coefficient, surface recombination velocity and nonradiative recombination time, depend on the type of doping in the epitaxial layer. The results clearly show that the photoacoustic technique using heat transmission configuration is an excellent tool to study the thermal and transport properties of epitaxial layers under different doping conditions.
Resumo:
Màster en Nanociència i Nanotecnologia. Curs 2007-2008. Directors: Francesca Peiró i Martínez and Jordi Arbiol i Cobos
Resumo:
The interplay between Rashba, Dresselhaus, and Zeeman interactions in a quantum well submitted to an external magnetic field is studied by means of an accurate analytical solution of the Hamiltonian, including electron-electron interactions in a sum-rule approach. This solution allows us to discuss the influence of the spin-orbit coupling on some relevant quantities that have been measured in inelastic light scattering and electron-spin resonance experiments on quantum wells. In particular, we have evaluated the spin-orbit contribution to the spin splitting of the Landau levels and to the splitting of charge- and spin-density excitations. We also discuss how the spin-orbit effects change if the applied magnetic field is tilted with respect to the direction perpendicular to the quantum well.