962 resultados para Electromagnetic Blocking
Resumo:
Monoclonal antibodies (mAbs) and human sera from gametocyte carriers were applied in the bio-assay to test for their transmission-blocking capacity. Competition ELISA's have been developed for the detection of natural transmission blocking antibodies. Approximately 55 of the sera blocking in the bio-assay gave positive results in these competition ELISA's.
Resumo:
The 21kD ookinete antigen of Plasmodium berghei (Pbs 21) has been shown to elicit an effective and long lasting transmission blocking immune response in mice. Having cloned and sequenced this antigen (Paton et al. 1993) the sequence was compared to the genes of the same family previously identified in P. falciparum, P. gallinaceum (Kaslow et al. 1989) and P. reichenowi (Lal et al. 1990). Four conserved areas were identified in this comparison, to which degenerate oligonucleotides were designed. PCR amplification and screening of genomic libraries was then carried out using these oligonucleotides. The P. yoelii gene was successfully cloned and a number of novel P. vivax genes identified but the P. vivax homologue of Pbs21 remains elusive.
Resumo:
Insect-borne diseases are responsible for severe mortality and morbidity worldwide. As control of insect vector populations relies primarily on the use of insecticides, the emergence of insecticide resistance as well to unintended consequences of insecticide use pose significant challenges to their continued application. Novel approaches to reduce pathogen transmission by disease vectors are been attempted, including transmission-blocking vaccines (TBVs) thought to be a feasible strategy to reduce pathogen burden in endemic areas. TBVs aim at preventing the transmission of pathogens from infected to uninfected vertebrate host by targeting molecule(s) expressed on the surface of pathogens during their developmental phase within the insect vector or by targeting molecules expressed by the vectors. For pathogen-based molecules, the majority of the TBV candidates selected as well as most of the data available regarding the effectiveness of this approach come from studies using malaria parasites. However, TBV candidates also have been identified from midgut tissues of mosquitoes and sand flies. In spite of the successes achieved in the potential application of TBVs against insect-borne diseases, many significant barriers remain. In this review, many of the TBV strategies against insect-borne pathogens and their respective ramification with regards to the immune response of the vertebrate host are discussed.
Resumo:
Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB) immunity (TBI) and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV), would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America.
Resumo:
One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy.
Resumo:
In transplant rejection, graft versus host or autoimmune diseases T cells are mediating the pathophysiological processes. Compared to unspecific pharmacological immune suppression specific inhibition of those T cells, that are involved in the disease, would be an alternative and attractive approach. T cells are activated after their T cell receptor (TCR) recognizes an antigenic peptide displayed by the Major Histocompatibility Complex (MHC). Molecules that interact with MHC-peptide-complexes in a specific fashion should block T cells with identical specificity. Using the model of the SSX2 (103-111)/HLA-A*0201 complex we investigated a panel of MHC-peptide-specific Fab antibodies for their capacity blocking specific T cell clones. Like TCRs all Fab antibodies reacted with the MHC complex only when the SSX2 (103-111) peptide was displayed. By introducing single amino acid mutations in the HLA-A*0201 heavy chain we identified the K66 residue as the most critical binding similar to that of TCRs. However, some Fab antibodies did not inhibit the reactivity of a specific T cell clone against peptide pulsed, artificial targets, nor cells displaying the peptide after endogenous processing. Measurements of binding kinetics revealed that only those Fab antibodies were capable of blocking T cells that interacted with an affinity in the nanomolar range. Fab antibodies binding like TCRs with affinities on the lower micromolar range did not inhibit T cell reactivity. These results indicate that molecules that block T cells by competitive binding with the TCR must have the same specificity but higher affinity for the MHC-peptide-complex than the TCR.
Resumo:
Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated.
Resumo:
Density is an important component of hot-mix asphalt (HMA) pavement quality and long-term performance. Insufficient density of an in-place HMA pavement is the most frequently cited construction-related performance problem. This study evaluated the use of electromagnetic gauges to nondestructively determine densities. Field and laboratory measurements were taken with two electromagnetic gauges—a PaveTracker and a Pavement Quality Indicator (PQI). Test data were collected in the field during and after paving operations and also in a laboratory on field mixes compacted in the lab. This study revealed that several mix- and project-specific factors affect electromagnetic gauge readings. Consequently, the implementation of these gauges will likely need to be done utilizing a test strip on a project- and mix-specific basis to appropriately identify an adjustment factor for the specific electromagnetic gauge being used for quality control and quality assurance (QC/QA) testing. The substantial reduction in testing time that results from employing electromagnetic gauges rather than coring makes it possible for more readings to be used in the QC/QA process with real-time information without increasing the testing costs.
Resumo:
This study describes a form of partial agonism for a CD8+ CTL clone, S15, in which perforin-dependent killing and IFN-gamma production were lost but Fas (APO1 or CD95)-dependent cytotoxicity preserved. Cloned S15 CTL are H-2Kd restricted and specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260 (SYIPSAEKI). The presence of a photoactivatable group in the epitope permitted assessment of TCR-ligand binding by TCR photoaffinity labeling. Selective activation of Fas-dependent killing was observed for a peptide-derivative variant containing a modified photoreactive group. A similar functional response was obtained after binding of the wild-type peptide derivative upon blocking of CD8 participation in TCR-ligand binding. The epitope modification or blocking of CD8 resulted in an > or = 8-fold decrease in TCR-ligand binding. In both cases, phosphorylation of zeta-chain and ZAP-70, as well as calcium mobilization were reduced close to background levels, indicating that activation of Fas-dependent cytotoxicity required weaker TCR signaling than activation of perforin-dependent killing or IFN-gamma production. Consistent with this, we observed that depletion of the protein tyrosine kinase p56(lck) by preincubation of S15 CTL with herbimycin A severely impaired perforin- but not Fas-dependent cytotoxicity. Together with the observation that S15 CTL constitutively express Fas ligand, these results indicate that TCR signaling too weak to elicit perforin-dependent cytotoxicity or cytokine production can induce Fas-dependent cytotoxicity, possibly by translocation of preformed Fas ligand to the cell surface.
Resumo:
Intratumoural (i.t.) injection of radio-iododeoxyuridine (IdUrd), a thymidine (dThd) analogue, is envisaged for targeted Auger electron- or beta-radiation therapy of glioblastoma. Here, biodistribution of [(125)I]IdUrd was evaluated 5 hr after i.t. injection in subcutaneous human glioblastoma xenografts LN229 after different intravenous (i.v.) pretreatments with fluorodeoxyuridine (FdUrd). FdUrd is known to block de novo dThd synthesis, thus favouring DNA incorporation of radio-IdUrd. Results showed that pretreatment with 2 mg/kg FdUrd i.v. in 2 fractions 0.5 hr and 1 hr before injection of radio-IdUrd resulted in a mean tumour uptake of 19.8% of injected dose (% ID), representing 65.3% ID/g for tumours of approx. 0.35 g. Tumour uptake of radio-IdUrd in non-pretreated mice was only 4.1% ID. Very low uptake was observed in normal nondividing and dividing tissues with a maximum concentration of 2.9% ID/g measured in spleen. Pretreatment with a higher dose of FdUrd of 10 mg/kg prolonged the increased tumour uptake of radio-IdUrd up to 5 hr. A competition experiment was performed in FdUrd pretreated mice using i.t. co-injection of excess dThd that resulted in very low tumour retention of [(125)I]IdUrd. DNA isolation experiments showed that in the mean >95% of tumour (125)I activity was incorporated in DNA. In conclusion, these results show that close to 20% ID of radio-IdUrd injected i.t. was incorporated in tumour DNA after i.v. pretreatment with clinically relevant doses of FdUrd and that this approach may be further exploited for diffusion and therapy studies with Auger electron- and/or beta-radiation-emitting radio-IdUrd.
Resumo:
In this work we present a first feasibility study of the ClearPEM technology for simultaneous PET-MR imaging. The mutual electromagnetic interference (EMI) effects between both systems were evaluated on a 7 T magnet by characterizing the response behavior of the ClearPEM detectors and front-end electronics to pulsed RF power and switched magnetic field gradients; and by analyzing the MR system performance degradation from noise pickup into the RF receiver chain, and from magnetic susceptibility artifacts caused by PET front-end materials.
Resumo:
The results of the application of the geophysical electromagnetic prospection methods in the resolution of the problems of the spatial location of the travertine quaternary formations of the Banyoles depression are presented