645 resultados para DILUTE
Resumo:
Measurements of friction and heat transfer coefficients were obtained with dilute polymer solutions flowing through electrically heated smooth and rough tubes. The polymer used was "Polyox WSR-301", and tests were performed at concentrations of 10 and 50 parts per million. The rough tubes contained a close-packed, granular type of surface with roughness-height-to-diameter ratios of 0.0138 and 0.0488 respectively. A Prandtl number range of 4.38 to 10.3 was investigated which was obtained by adjusting the bulk temperature of the solution. The Reynolds numbers in the experiments were varied from =10,000 (Pr= 10.3) to 250,000 (Pr= 4.38).
Friction reductions as high as 73% in smooth tubes and 83% in rough tubes were observed, accompanied by an even more drastic heat transfer reduction (as high as 84% in smooth tubes and 93% in rough tubes). The heat transfer coefficients with Polyox can be lower for a rough tube than for a smooth one.
The similarity rules previously developed for heat transfer with a Newtonian fluid were extended to dilute polymer solution pipe flows. A velocity profile similar to the one proposed by Deissler was taken as a model to interpret the friction and heat transfer data in smooth tubes. It was found that the observed results could be explained by assuming that the turbulent diffusivities are reduced in smooth tubes in the vicinity of the wall, which brings about a thickening of the viscous layer. A possible mechanism describing the effect of the polymer additive on rough pipe flow is also discussed.
Resumo:
Recently, experimental evidence was presented which suggests that as the stoichiometric composition CuTe, NiTe, Tl//2Te and MnTe are approached from pure Te in the liquid state, substantial charge transfer takes place and Te exists in the form Te**y**31 ions with y close to 2. The system studied (Te-Tl) is one in which charge transfer localizes electrons on the tellurium and leads to semiconducting behavior at the stoichiometric composition Tl//2Te.
Simulation of NOx Formation in Dilute H2/CO/ N2-Air Diffusion Flames Using Full and Reduced Kinetics
Resumo:
High Curie temperature of 900 K has been reported in Cr-doped AlN diluted magnetic semiconductors prepared by various methods, which is exciting for spintronic applications. It is believed that N defects play important roles in achieving the high-temperature ferromagnetism in good samples. Motivated by these experimental advances, we use a full-potential density-functional-theory method and supercell approach to investigate N defects and their effects on ferromagnetism of (Al,Cr)N with N vacancies (V-N). We investigate the structural and electronic properties of V-N, single Cr atom, Cr-Cr atom pairs, Cr-V-N pairs, and so on. In each case, the most stable structure is obtained by comparing different atomic configurations optimized in terms of the total energy and the force on every atom, and then it is used to calculate the defect formation energy and study the electronic structures. Our total-energy calculations show that the nearest substitutional Cr-Cr pair with the two spins in parallel is the most favorable and the nearest Cr-V-N pair makes a stable complex. Our formation energies indicate that V-N regions can be formed spontaneously under N-poor condition because the minimal V-N formation energy equals -0.23 eV or Cr-doped regions with high enough concentrations can be formed under N-rich condition because the Cr formation energy equals 0.04 eV, and hence real Cr-doped AlN samples are formed by forming some Cr-doped regions and separated V-N regions and through subsequent atomic relaxation during annealing. Both of the single Cr atom and the N vacancy create filled electronic states in the semiconductor gap of AlN. N vacancies enhance the ferromagnetism by adding mu(B) to the Cr moment each but reduce the ferromagnetic exchange constants between the spins in the nearest Cr-Cr pairs. These calculated results are in agreement with experimental observations and facts of real Cr-doped AlN samples and their synthesis. Our first-principles results are useful to elucidate the mechanism for the ferromagnetism and to explore high-performance Cr-doped AlN diluted magnetic semiconductors.
Resumo:
The electronic structures and electron g factors of InSb1-sNs and GaAs1-sNs nanowires and bulk material under the magnetic and electric fields are investigated by using the ten-band k.p model. The nitrogen doping has direct and indirect effects on the g factors. A giant g factor with absolute value larger than 900 is found in InSb1-sNs bulk material. A transverse electric field can increase the g factors, which has obviously asymmetric effects on the g factors in different directions. An electric field tunable zero g factor is found in GaAs1-sNs nanowires. (C) 2007 American Institute of Physics.
Resumo:
Photoluminescence (PL) properties of the E-0, E-0+Delta(0), and E+ bands in an x=0.62% GaAs1-xNx alloy were investigated in detail, including their peak position, linewidth, and line shape dependences on the excitation energy, excitation power, and temperature, using micro-PL. The hot electrons within the E+ band are found to exhibit highly unusual thermalization, which results in a large blueshift in its PL peak energy by >2k(B)T, suggesting peculiar density of states and carrier dynamics of the E+ band.
Resumo:
Using microphotoluminescence (mu-PL), in dilute N GaAs1-xNx alloys, we observe a PL band far above the bandgap E-0 with its peak energy following the so-called E+ transition, but with contribution from perturbed GaAs host states in a broad spectral range (> 100 meV). This finding is in sharp contrast to the general understanding that E+ is associated with a well-defined conduction band level (either L-1c or N-x). Beyond this insight regarding the strong perturbation of the GaAs band structure caused by N incorporation, we demonstrate that a small amount of isoelectronic doping in conjunction with mu-PL allows direct observation of above-bandgap transitions that are not usually accessible by PL.
Resumo:
A set of GaAs1-xNx samples with small nitrogen composition (x<1%) were investigated by continuous-wave photoluminescence (PL), pulse-wave excitation PL, and time-resolved PL. In the PL spectra, an extra transition located at the higher-energy side of the commonly reported N-related emissions was observed. By measuring the PL dependence on temperature and excitation power, the PL peak was identified as a transition of alloy band edge-related recombination in GaAsN. The PL dynamics further confirms its intrinsic nature as being associated with the band edge rather than N-related bound states. (C) 2003 American Institute of Physics.
Resumo:
The transitions of E0 ,E0 +A0, and E+ in dilute GaAs(1-x) Nx alloys with x = 0.10% ,0.22% ,0.36% ,and 0.62% are observed by micro-photoluminescence. Resonant Raman scattering results further confirm that they are from the intrinsic emissions in the studied dilute GaAsN alloys rather than some localized exciton emissions in the GaAsN alloys. The results show that the nitrogen-induced E E+ and E0 + A0 transitions in GaAsN alloys intersect at a nitrogen content of about 0.16%. It is demonstrated that a small amount of isoelectronic doping combined with micro-photoluminescence allows direct observation of above band gap transitions that are not usually accessible in photoluminescence.