933 resultados para peroxidase enzyme


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three plant proteinase inhibitors BbKI (kallikrein inhibitor) and BbCI (cruzipain inhibitor) from Bauhinia bouhinioides, and a BrTI (trypsin inhibitor) from B. rufa, were examined for other effects in Callosobruchus maculatus development; of these only BrTI affected bruchid emergence. BrTI and BbKI share 81% identities in their primary sequences and the major differences between them are the regions comprising the RGD and RGE motifs in BrTI. These sequences were shown to be essential for BrTI insecticidal activity, since a modified BbKI [that is a recombinant form (BbKIm) with some amino acid residues replaced by those found in BrTI sequence] also strongly inhibited insect development. By using synthetic peptides related to the BrTI sequence, YLEAPVARGDGGLA-NH(2) (RGE) and IVYYPDRGETGL-NH(2) (RGE), it was found that the peptide with an RGE sequence was able to block normal development of C. maculatus larvae (ED(50) 0.16% and LD(50) 0.09%), this being even more effective than the native protein. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structures of an aspartic proteinase from Trichoderma reesei (TrAsP) and of its complex with a competitive inhibitor, pepstatin A, were solved and refined to crystallographic R-factors of 17.9% (R(free)=21.2%) at 1.70 angstrom resolution and 15.81% (R(free) = 19.2%) at 1.85 angstrom resolution, respectively. The three-dimensional structure of TrAsP is similar to structures of other members of the pepsin-like family of aspartic proteinases. Each molecule is folded in a predominantly beta-sheet bilobal structure with the N-terminal and C-terminal domains of about the same size. Structural comparison of the native structure and the TrAsP-pepstatin complex reveals that the enzyme undergoes an induced-fit, rigid-body movement upon inhibitor binding, with the N-terminal and C-terminal lobes tightly enclosing the inhibitor. Upon recognition and binding of pepstatin A, amino acid residues of the enzyme active site form a number of short hydrogen bonds to the inhibitor that may play an important role in the mechanism of catalysis and inhibition. The structures of TrAsP were used as a template for performing statistical coupling analysis of the aspartic protease family. This approach permitted, for the first time, the identification of a network of structurally linked residues putatively mediating conformational changes relevant to the function of this family of enzymes. Statistical coupling analysis reveals coevolved continuous clusters of amino acid residues that extend from the active site into the hydrophobic cores of each of the two domains and include amino acid residues from the flap regions, highlighting the importance of these parts of the protein for its enzymatic activity. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutral trehalase from Neurospora crassa was expressed in Escherichia coli as a polypeptide of similar to 84 kDa in agreement with the theoretical size calculated from the corresponding cDNA. The recombinant neutral trehalase, purified by affinity chromatography exhibited a specific activity of 80-150 mU/mg protein. Optima of pH and temperature were 7.0 and 30 degrees C, respectively. The enzyme was absolutely specific for trehalose, and was quite sensitive to incubation at 40 degrees C. The recombinant enzyme was totally dependent on calcium, and was inhibited by ATP, copper, silver, aluminium and cobalt. K(M) was 42 mM, and V(max) was 30.6 nmol of glucose/min. The recombinant protein was phosphorylated by cAMP-dependent protein kinase, but not significantly activated. Immunoblotting with polyclonal antiserum prepared against the recombinant protein showed that neutral trehalase protein levels increased during exponential phase of N. crassa growth and dropped at the stationary phase. This is the first report of a neutral trehalase produced in E. coli with similar biochemical properties described for fungi native neutral trehalases, including calcium-dependence. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite being one of the most important antioxidant defenses, Cu,Zn-superoxide dismutase (Sod1) has been frequently associated with harmful effects, including neurotoxicity. This toxicity has been attributed to immature forms of Sod1 and extraneous catalytic activities. Among these, the ability of Sod1 to function as a peroxidase may be particularly relevant because it is increased in bicarbonate buffer and produces the reactive carbonate radical. Despite many studies, how this radical forms remains unknown. To address this question, we systematically studied hSod1 peroxidase activity in the presence of nitrite, formate, and bicarbonate-carbon dioxide. Kinetic analyses of hydrogen peroxide consumption and of nitrite, formate, and bicarbonate-carbon dioxide oxidation showed that the Sod1-bound hydroxyl-like oxidant functions in the presence of nitrite and formate. In the presence of bicarbonate-carbon dioxide, this oxidant is replaced by peroxymonocarbonate, which is then reduced to the carbonate radical. Peroxymonocarbonate intermediacy was evidenced by (13)C NMR experiments showing line broadening of its peak in the presence of Zn,ZnSod1. In agreement, peroxymonocarbonate was docked into the hSod1 active site, where it interacted with the conserved Arg(143). Also, a reaction between peroxymonocarbonate and Cu(I)Sod1 was demonstrated by stopped-flow experiments. Kinetic simulations indicated that peroxymonocarbonate is produced during Sod1 turnover and not in bulk solution. In the presence of bicarbonate-carbon dioxide, sustained hSod1-mediated oxidations occurred with low steady-state concentrations of hydrogen peroxide (4-10 mu M). Thus, carbonate radical formation through peroxymonocarbonate may be a key event in Sod1-induced toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethylene glycol dimethacrylate (EGDMA) and/or triethylene glycol dimethacrylate (TEGDMA) oligomers formation was catalyzed in aqueous medium by horseradish peroxidase (HRP) in the presence of H(2)O(2) at room temperature. EGDMA and/or TEGDMA oligomers were characterized by means of gel permeation chromatography, infrared vibrational spectroscopy and (1)H NMR spectroscopy. Self-assembling of oligomers led to right-angled crystalline particles, as evidenced by scanning electron microscopy and differential scanning calorimetry. EGDMA, TEGDMA and EGDMA-co-TEGDMA oligomers synthesized in the presence of HRP-H(2)O(2) system presented pendant vinyl groups along the chains. good solubility in chloroform, and well-defined melting point. These features evidenced few cross-linking or cyclization and revealed that the catalytic properties of HRP led to oligomeric materials with new characteristics. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aminoacetone (AA), triose phosphates, and acetone are putative endogenous sources of potentially cytotoxic and genotoxic methylglyoxal (MG), which has been reported to be augmented in the plasma of diabetic patients. In these patients, accumulation of MG derived from aminoacetone, a threonine and glycine catabolite, is inferred from the observed concomitant endothelial overexpression of circulating semicarbazide-sensitive amine oxidases. These copper-dependent enzymes catalyze the oxidation of primary amines, such as AA and methylamine, by molecular oxygen, to the corresponding aldehydes, NH4+ ion and H2O2. We recently reported that AA aerobic oxidation to MG also takes place immediately upon addition of catalytic amounts of copper and iron ions. Taking into account that (i) MG and H2O2 are reportedly cytotoxic to insulin-producing cell lineages such as RINm5f and that (ii) the metal-catalyzed oxidation of AA is propagated by O-2(center dot-) radical anion, we decided to investigate the possible pro-oxidant action of AA on these cells taken here as a reliable model system for pancreatic beta-cells. Indeed, we show that AA (0.10-5.0 mM) administration to RINm5f cultures induces cell death. Ferrous (50-300 mu M) and Fe3+ ion (100 mu M) addition to the cell cultures had no effect, whereas Cu2+ (5.0-100 mu M) significantly increased cell death. Supplementation of the AA- and Cu2+-containing culture medium with antioxidants, such as catalase (5.0 mu M), superoxide dismutase (SOD, 50 U/mL), and N-acetylcysteine (NAC, 5.0 mM) led to partial protection. mRNA expression of MnSOD, CuZnSOD, glutathione peroxidase, and glutathione reductase, but not of catalase, is higher in cells treated with AA (0.50-1.0 mM) plus Cu2+ ions (10-50 mu M) relative to control cultures. This may imply higher activity of antioxidant enzymes C, in RINm5f AA-treated cells. In addition, we have found that AA (0.50-1.0 mM) Plus Cu2+ (100 mu M) (i) increase RINm5f cytosolic calcium; (ii) promote DNA fragmentation; and (iii) increase the pro-apoptotic (Bax)/antiapoptotic (Bcl-2) ratio at the level of mRNA expression. In conclusion, although both normal and pathological concentrations of AA are probably much lower than those used here, it is tempting to propose that excess AA in diabetic patients may drive oxidative damage and eventually the death of pancreatic beta-cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the therapeutic potential of tempol (4-hydroxy-2,2,6,6-tetra-methyl-1-piperidinyloxy) and related nitroxides as antioxidants, their effects on peroxidase-mediated protein tyrosine nitration remain unexplored. This posttranslational protein modification is a biomarker of nitric oxide-derived oxidants, and, relevantly, it parallels tissue injury in animal models of inflammation and is attenuated by tempol treatment. Here, we examine tempol effects on ribonuclease (RNase) nitration mediated by myeloperoxidase (MPO), a mammalian enzyme that plays a central role in various inflammatory processes.. Some experiments were also performed with horseradish peroxidase (HRP). We show that tempol efficiently inhibits peroxidase-mediated RNase nitration. For instance, 10 mu M tempol was able to inhibit by 90% the yield of 290 mu M 3-nitrotyrosine produced from 370 mu M RNase. The effect of tempol was not completely catalytic because part of it was consumed by recombination with RNase-tyrosyl radicals. The second-order rate constant of the reaction of tempol with MPO compound I and 11 were determined by stopped-flow kinetics as 3.3 x 10(6) and 2.6 x 10(4) M-1 s(-1), respectively (pH 7.4, 25 degrees C); the corresponding HRP constants were orders of magnitude smaller. Time-dependent hydrogen peroxide and nitrite consumption and oxygen production in the incubations were quantified experimentally and modeled by kinetic simulations. The results indicate that tempol inhibits peroxidase-mediated RNase nitration mainly because of its reaction with nitrogen dioxide to produce the oxammonium cation, which, in turn, recycles back to tempol by reacting with hydrogen peroxide and superoxide radical to produce oxygen and regenerate nitrite. The implications for nitroxide antioxidant mechanisms are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteins containing reactive cysteine residues (protein-Cys) are receiving increased attention as mediators of hydrogen peroxide signaling. These proteins are mainly identified by mining the thiol proteomes of oxidized protein-Cys in cells and tissues. However, it is difficult to determine if oxidation occurs through a direct reaction with hydrogen peroxide or by thiol-disulfide exchange reactions. Kinetic studies with purified proteins provide invaluable information about the reactivity of protein-Cys residues with hydrogen peroxide. Previously, we showed that the characteristic UV-Vis spectrum of horseradish peroxidase compound I, produced from the oxidation of horseradish peroxidase by hydrogen peroxide, is a simple, reliable, and useful tool to determine the second-order rate constant of the reaction of reactive protein-Cys with hydrogen peroxide and peroxynitrite. Here, the method is fully described and extended to quantify reactive protein-Cys residues and micromolar concentrations of hydrogen peroxide. Members of the peroxiredoxin family were selected for the demonstration and validation of this methodology. In particular, we determined the pK(a) of the peroxidatic thiol of rPrx6 (5.2) and the second-order rate constant of its reactions with hydrogen peroxide ((3.4 +/- 0.2) x 10(7) M(-1) s(-1)) and peroxynitrite ((3.7 +/- 0.4) x 10(5) M(-1) s(-1)) at pH 7.4 and 25 degrees C. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the in vitro antioxidant effect of alkyl-organotellurides A-D on lipid peroxidation and protein carbonylation in rat liver homogenates. The thiol oxidase and thiol peroxidase-like activities of compounds were investigated. delta-Aminolevulinic acid dehydratase (delta-ALA-D) activity was determined in rat liver homogenates. Compounds A-D protected against lipid peroxidation induced by Fe(2+)/EDTA and sodium nitroprusside (SNP). According to the confidence limits of the IC(50) values of compounds A-D, the IC(50) values for organotellurides followed the order: C (0.30 mu M) <= B (0.40 mu M) < D (0.68 mu M) < A (2.90 mu M), for Fe(2+)/EDTA, and B (0.21 mu M) <= C (0.33 mu M) < D (0.43 mu M) < A (1.21 mu M) for SNP-induced lipid peroxidation. Compounds A-D reduced protein carbonyl content to control levels. The results demonstrated an inverse correlation between thiol oxidase and delta-ALA-D activities. This study supports an antioxidant effect of organotellurides A-D on rat liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel biosensor for glucose was prepared by adsorption of 1,1`-bis(4-carboxybenzyl)-4,4`-bipyridinium di-bromide compound (H(2)BpybcBr(2)) onto the surface of a nanocrystalline TiO(2) film deposited onto FTO glasses, which was used as a platform to assemble the enzyme glucose oxidase to the electrode surface. The H(2)BpybcBr(2)/TiO(2)/FTO modified electrode was characterized by scanning electron microscopy, X-ray fluorescence image, cyclic voltammograms and spectroelectrochemical measurements. The immobilization of GOD on functionalized TiO(2) film led to stable amperometric biosensing for glucose with a linear range from 153 mu mol L(-1) to 1.30 mmol L(-1) and a detection limit of 51 mu mol L(-1). The apparent Michaelis-Menten constant (K(m)) was estimated to be 3.76 mmol L(-1), which suggested a high enzyme-substrate affinity. The maximum electrode sensitivity was 1.25 mu A mmol L(-1). The study proved that the combination of viologen mediators with TiO(2) film retains the electrocatalytic activity of the enzyme, and also enhances the electron transfer process, and hence regenerating the enzyme in the reaction with glucose. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the applications of anew carbon paste electrode containing fibers of coconut (Cocus nucifera L) fruit, which are very rich in peroxidase enzymes naturally immobilized on its structure. The new sensor was applied for the amperometric quantification of benzoyl peroxide in facial creams and dermatological shampoos. The amperometric measurements were performed in 0.1 mol L(-1) phosphate buffer (pH 5.2), at 0.0 V (versus Ag/AgCl). On these conditions, benzoyl peroxide was rapidly determined in the 5.0-55 mu mol L(-1), with a detection limit of 2.5 mu mol L(-1) (s/n = 3), response time of 4.1 s (90% of the steady state) and sensitivity limit of 0.33 A mol L(-1) cm(-2). The amperometric results are in good agreement with those obtained by spectrophotometric technique, used as a standard method. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electrochemical biosensor using poly-phenol oxidasa (PPO) was constructed for the determination of phenolic compounds. The PPO employed with enzyme, it was obtained from Archontophoenix Cunninghamiana. The biosensor showed range of linearity in the range of 1 x 10(-3) to 1 x 10(-4) mol/L and a detection limit of 1 x 10(-4) mol/L. The optimal pH was 6,7 in medium phosphate buffer. The lifetime of the biosensors was 1 months, stored in phosphate buffer solution 0.1 mol/L to ambient temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper outlines the results obtained with biosensors designed for urea amperometric detection. The incorporation of urease into a bipolymeric substrate consisting of poly(pyrrole) and poly(5-amino-1-naphthol) was performed through four different approaches: direct adsorption, entrapment in cellulose acetate layer. cross-linking with glutaraldehyde, and also covalent attachment to the polymeric matrix. Poly(pyrrole) acts as amperometric transducer in these biosensors, while poly(5-amino-1-naphthol) drastically reduces the interference signal of agents such as ascorbic and uric acids. The biosensors containing urease covalently attached to the substrate provided interesting results in terms of sensitivity towards urea (0.50 mu A cm(-2) mmol(-1) L), lifetime (20 days) and short response times, due to the enzyme immobilization method used. All biosensors analyzed showed also a wide linear concentration range (up to 100 mmol L(-1)) and low detection limits (0.22-0.58 mmol L(-1)). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellulase is an enzymatic complex which synergically promotes the degradation of cellulose to glucose. The adsorption behavior of cellulase from Trichoderma reesei onto Si wafers or amino-terminated surfaces was investigated by means of ellipsometry and atomic force microscopy (AFM) as a function of temperature. Upon increasing temperature from (24 +/- 1) to (60 +/- 1) degrees C, adsorption of cellulase became faster and more pronounced and the mean roughness of cellulase adsorbed layers increased. In the case of cellulase adsorbed onto Si wafers, Arrhenius`s plot allowed us to estimate the adsorption energy as 24.2 kJ mol(-1). The hydrolytic activity of free cellulase and cellulase immobilized onto Si wafers was tested using cellulose dispersions as substrates. The incubation temperature ranged from (37 +/- 1) to (60 +/- 1) degrees C. The highest efficiency was observed at (60 +/- 1) degrees C. The amount of glucose produced by free cellulase was similar to 20% higher than that obtained from immobilized cellulase. However, immobilizing cellulase onto Si wafers proved to be advantageous because they could be reused six times while retaining their original activity level. Such an effect was attributed to surface hydration, which prevents enzyme denaturation. The hydrolytic activity of cellulase immobilized onto amino-terminated surfaces was slightly lower than that observed for cellulase adsorbed onto Si wafers, and reuse was not possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neodymium based fluorescence presents several advantages in comparison to conventional rare earth or enzyme-substrate based fluorescence emitting sources (e.g.Tb, HRP). Based on this fact we have herein explored a Nd-based fluoroimmunoassay. We efficiently detected the presence of an oxidized low-density lipoprotein (oxLDL) in human plasma a well-known marker for cardiovascular diseases, which causes around 30% of deaths worldwide. Conventional fluoroimmunoassay uses time-resolved luminescence techniques, with detection in the visible range, to eliminate the fluorescence background from the biological specimens. By using an immunoassay based on functionalized Y(2)O(3):Nd(3+) nanoparticles, where the excitation and emission processes in the Nd(3+) ion occur in the near-infrared (NIR) region, we have succeeded in eliminating the interferences from the biological fluorescence background, avoiding the use of time-resolved techniques. This yields higher emission intensity from the Nd(3+)-nanolabels and efficient detection of anti-oxidized low-density lipoproteins (anti-oxLDL) by Y(2)O(3):Nd(3+)-antibody-antigen conjugation, leading to a novel biolabeling method. (C) 2010 Elsevier B.V. All rights reserved.