920 resultados para Output gap
Resumo:
Films of GaN have been grown using a modified MBE technique in which the active nitrogen is supplied from an RF plasma source. Wurtzite films grown on (001) oriented GaAs substrates show highly defective, ordered polycrystalline growth with a columnar structure, the (0001) planes of the layers being parallel to the (001) planes of the GaAs substrate. Films grown using a coincident As flux, however, have a single crystal zinc-blende growth mode. They have better structural and optical properties. To improve the properties of the wurtzite films we have studied the growth of such films on (111) oriented GaAs and GaP substrates. The improved structural properties of such films, assessed using X-ray and TEM method, correlate with better low-temperature FL.
Resumo:
A fiber coupled module is fabricated with integrating the emitting light from four laser diode bars into multimode fiber bundle. The continuous wave (CW) output power of the module is about 130 W with a coupling efficiency of around 80%. The output power is very stable after the temperature cycling and vibration test. No apparent power decrease has been observed as the device working continuously for 500 h.
Resumo:
Square microcavity laser with an output waveguide is proposed and analyzed by the finite-difference time-domain (FDTD) technique. For a square resonator with refractive index of 3.2, side length of 4 microns, and output waveguide of 0.4-micron width, we have got the quality factors (Q factors) of 6.7×10~2 and 7.3×10~3 for the fundamental and first-order transverse magnetic (TM) mode near the wavelength of 1.5 microns, respectively. The simulated intensity distribution for the first-order TM mode shows that the coupling efficiency in the waveguide reaches 53%. The numerical simulation shows that the first-order transverse modes have fairly high Q factor and high coupling efficiency to the output waveguide. Therefore the square resonator with an output waveguide is a promising candidate to realize single-mode directional emission microcavity lasers.
Resumo:
The intensity-dependent two-photon absorption and nonlinear refraction coefficients of GaP optical crystal at 800 nm were measured with time-resolved femtosecond pump-probe technique. A nonlinear refraction coefficient of 1.7*10^(-17) m2/W and a two-photon absorption coefficient of 1.5*10^(-12) m/W of GaP crystal were obtained at a pump intensity of 3.5*10^(12) W/m2. The nonlinear refraction coefficient saturates at 3.5*10^(12) W/m2, while the two-photon absorption coefficient keeps linear increase at 6*10^(12) W/m2. Furthermore, fifth-order nonlinear refraction of the GaP optical crystal was revealed to occur above pump intensity of 3.5*10^(12) W/m2.
Resumo:
Continuous wave operation of a semiconductor laser diode based on five stacks of InAs quantum dots (QDs) embedded within strained InGaAs quantum wells as an active region is demonstrated. At room temperature, 355-mW output power at ground state of 1.33-1.35 microns for a 20-micron ridge-waveguide laser without facet coating is achieved. By optimizing the molecular beam epitaxy (MBE) growth conditions, the QD density per layer is raised to 4*10^(10) cm^(-2). The laser keeps lasing at ground state until the temperature reaches 65 Celsius degree.
Resumo:
A 1.60μm laser diode and electroabsorption modulator monolithically integrated with a novel dualwaveguide spot-size converter output for low-loss coupling to a cleaved single-mode optical fiber are demonstrated.The devices emit in a single transverse and quasi single longitudinal mode with an SMSR of 25.6dB. These devices exhibit a 3dB modulation bandwidth of 15. 0GHz, and modulator DC extinction ratios of 16.2dB. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7. 3°× 18. 0°,respectively, resulting in a 3. 0dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
A 1×8 multimode interference power splitter with multimode input/output waveguides in SOI material is designed by the beam propagation method and fabricated by the inductive coupled plasma etching technology for use in fiber optics communication systems.The fabricated device exhibits low loss and good coupling uniformity.The excess loss is lower than 0.8dB,and the uniformity is 0.45dB at the wavelength of 1550nm.Moreover,the polarization dependent loss is lower than 0.7dB at 1550nm.The device size is only 2mm×10mm.
Resumo:
A novel InGaAs(LT-In0.25 Ga0.75 As) absorber grown by metal organic chemical vapor deposition at low temperature is presented.Using it as well as an output coupler,passive mode locking,which produces pulses as short as several hundred picoseconds for diode-end-pumped Nd∶YAG laser at 1.06μm,is realized.The pulse frequency is 150MHz.
Resumo:
报道了用纳米碳管模板法制备的GaP纳米棒的拉曼光谱特征,观测到声子限制效应引起的GaP纳米棒TO和LO模的红移,红移量一般在2-10cm^-1之间,与所测到的纳米棒的尺寸有关,在偏振特性研究中,发现GaP纳米棒的偏振特性不能用单根纳米棒的选择定则来解释,而与测量光斑内多根纳米棒的无序取向有关,无序程度越高,偏振特性的方向性越弱,当激发光功率增加时,GaP纳米棒的TO和LO模的频率显著减少,表明纳米棒中的激光加热效应比体材料中强很多,而且GaP纳米棒的拉曼散射强度随激发光功率的增加先饱和,然后减小,表明在强激发功率下GaP纳米棒中的缺陷会迅速增加。
Resumo:
The n-type GaAs substrates are used and their conductive type is changed to p-type by tunnel junction for AlGaInP light emitting diodes (TJ-LED), then n-type GaP layer is used as current spreading layer. Because resistivity of the n-type GaP is lower than that of p-type, the effect of current spreading layer is enhanced and the light extraction efficiency is increased by the n-type GaP current spreading layer. For TJ-LED with 3μm n-type GaP current spreading layer, experimental results show that compared with conventional LED with p-type GaP current spreading layer, light output power is increased for 50% at 20mA and for 66.7% at 100mA.
Resumo:
于2010-11-23批量导入
Resumo:
利用X射线光电子能谱(XPS)深度剖析方法对气体源分子束外延(GS-MBE)生长的GaP/Si异质结构进行了详细的分析。其结果表明