875 resultados para Open Space Program
Resumo:
The problem of optimal design of a multi-gravity-assist space trajectories, with free number of deep space maneuvers (MGADSM) poses multi-modal cost functions. In the general form of the problem, the number of design variables is solution dependent. To handle global optimization problems where the number of design variables varies from one solution to another, two novel genetic-based techniques are introduced: hidden genes genetic algorithm (HGGA) and dynamic-size multiple population genetic algorithm (DSMPGA). In HGGA, a fixed length for the design variables is assigned for all solutions. Independent variables of each solution are divided into effective and ineffective (hidden) genes. Hidden genes are excluded in cost function evaluations. Full-length solutions undergo standard genetic operations. In DSMPGA, sub-populations of fixed size design spaces are randomly initialized. Standard genetic operations are carried out for a stage of generations. A new population is then created by reproduction from all members based on their relative fitness. The resulting sub-populations have different sizes from their initial sizes. The process repeats, leading to increasing the size of sub-populations of more fit solutions. Both techniques are applied to several MGADSM problems. They have the capability to determine the number of swing-bys, the planets to swing by, launch and arrival dates, and the number of deep space maneuvers as well as their locations, magnitudes, and directions in an optimal sense. The results show that solutions obtained using the developed tools match known solutions for complex case studies. The HGGA is also used to obtain the asteroids sequence and the mission structure in the global trajectory optimization competition (GTOC) problem. As an application of GA optimization to Earth orbits, the problem of visiting a set of ground sites within a constrained time frame is solved. The J2 perturbation and zonal coverage are considered to design repeated Sun-synchronous orbits. Finally, a new set of orbits, the repeated shadow track orbits (RSTO), is introduced. The orbit parameters are optimized such that the shadow of a spacecraft on the Earth visits the same locations periodically every desired number of days.
Resumo:
With the insatiable curiosity of human beings to explore the universe and our solar system, it is essential to benefit from larger propulsion capabilities to execute efficient transfers and carry more scientific equipment. In the field of space trajectory optimization the fundamental advances in using low-thrust propulsion and exploiting the multi-body dynamics has played pivotal role in designing efficient space mission trajectories. The former provides larger cumulative momentum change in comparison with the conventional chemical propulsion whereas the latter results in almost ballistic trajectories with negligible amount of propellant. However, the problem of space trajectory design translates into an optimal control problem which is, in general, time-consuming and very difficult to solve. Therefore, the goal of the thesis is to address the above problem by developing a methodology to simplify and facilitate the process of finding initial low-thrust trajectories in both two-body and multi-body environments. This initial solution will not only provide mission designers with a better understanding of the problem and solution but also serves as a good initial guess for high-fidelity optimal control solvers and increases their convergence rate. Almost all of the high-fidelity solvers enjoy the existence of an initial guess that already satisfies the equations of motion and some of the most important constraints. Despite the nonlinear nature of the problem, it is sought to find a robust technique for a wide range of typical low-thrust transfers with reduced computational intensity. Another important aspect of our developed methodology is the representation of low-thrust trajectories by Fourier series with which the number of design variables reduces significantly. Emphasis is given on simplifying the equations of motion to the possible extent and avoid approximating the controls. These facts contribute to speeding up the solution finding procedure. Several example applications of two and three-dimensional two-body low-thrust transfers are considered. In addition, in the multi-body dynamic, and in particular the restricted-three-body dynamic, several Earth-to-Moon low-thrust transfers are investigated.
Resumo:
Acer saccharum Marsh., is one of the most valuable trees in the northern hardwood forests. Severe dieback was recently reported by area foresters in the western Upper Great Lakes Region. Sugar Maple has had a history of dieback over the last 100 years throughout its range and different variables have been identified as being the predisposing and inciting factors in different regions at different times. Some of the most common factors attributed to previous maple dieback episodes were insect defoliation outbreaks, inadequate precipitation, poor soils, atmospheric deposition, fungal pathogens, poor management, or a combination of these. The current sugar maple dieback was evaluated to determine the etiology, severity, and change in dieback on both industry and public lands. A network of 120 sugar maple health evaluation plots was established in the Upper Peninsula, Michigan, northern Wisconsin, and eastern Minnesota and evaluated annually from 2009-2012. Mean sugar maple crown dieback between 2009-2012 was 12.4% (ranging from 0.8-75.5%) across the region. Overall, during the sampling period, mean dieback decreased by 5% but individual plots and trees continued to decline. Relationships were examined between sugar maple dieback and growth, habitat conditions, ownership, climate, soil, foliage nutrients, and the maple pathogen sapstreak. The only statistically significant factor was found to be a high level of forest floor impacts due to exotic earthworm activity. Sugar maple on soils with lower pH had less earthworm impacts, less dieback, and higher growth rates than those on soils more favorable to earthworms. Nutritional status of foliage and soil was correlated with dieback and growth suggesting perturbation of nutrient cycling may be predisposing or contributing to dieback. The previous winter's snowfall totals, length of stay on the ground, and number of days with freezing temperatures had a significant positive relationship to sugar maple growth rates. Sapstreak disease, Ceratocystis virescens, may be contributing to dieback in some stands but was not related to the amount of dieback in the region. The ultimate goal of this research is to help forest managers in the Great Lakes Region prevent, anticipate, reduce, and/or salvage stands with dieback and loss in the future. An improved understanding of the complex etiology associated with sugar maple dieback in the Upper Great Lakes Region is necessary to make appropriate silvicultural decisions. Forest Health education helps increase awareness and proactive forest management in the face of changing forest ecosystems. Lessons are included to assist educators in incorporating forest health into standard biological disciplines at the secondary school curricula.
Resumo:
Chapter 1. The Action Research in this report was to focus on improving the reading comprehension of students with expository text in relation to identifying the main idea and supporting details. Students were given an expository text to read and identify main idea and 2 -3 supporting details as a pre assessment. Students were provided instruction and support in DRTA (Directed Reading Thinking Activity) and SQ3R (Survey, Question, Read, Recite, Review) methodology to identify the Main Idea and supporting details of a selected expository text for both pre & posttest. Results were compiled and analyzed on the effectiveness of the strategies by overall student growth in accurately identifying the Main Idea and being able to state at least 2 supporting details. Analysis of the data will show that the methods were effective in middle school students’ ability to read and extrapolate the necessary information from expository text. Chapter 2 is a reflective essay on the MiTEP Michigan Teacher Excellence Program and its impact on my teaching practices, lesson delivery and leadership development.
Resumo:
Femoroacetabular impingement (FAI) is an established cause of osteoarthrosis of the hip. Surgery is intended to remove the cause of impingement with hip dislocation and resection of osseous prominences of the acetabular rim and of the femoral head-neck junction. Using the Merle d'Aubigné score and qualitative categories, recent studies suggest good to excellent outcomes in 75% to 80% of patients after open surgery with dislocation of the femoral head. Unsatisfactory outcome is mainly related to pain, located either in the area of the greater trochanter or in the groin. There are several reasons for persisting groin pain. Joint degeneration with joint space narrowing and/or osteophyte formation, insufficient correction of the acetabula, and femoral pathology are known factors for unsatisfactory outcome. Recently, intraarticular adhesions between the femoral neck and joint capsule have been identified as an additional cause of postoperative groin pain. The adhesions form between the joint capsule and the resected area on the femoral neck and may lead to soft tissue impingement. MR-arthrography is used for diagnosis and the adhesions can be treated successfully by arthroscopy. While arthroscopic resection improves outcome it is technically demanding. Avoiding the formation of adhesions is important and is perhaps best accomplished by passive motion exercises after the initial surgery.
Resumo:
Most available studies of interconnected matrix porosity of crystalline rocks are based on laboratory investigations; that is, work on samples that have undergone stress relaxation and were affected by drilling and sample preparation. The extrapolation of the results to in situ conditions is therefore associated with considerable uncertainty, and this was the motivation to conduct the ‘in situ Connected Porosity’ experiment at the Grimsel Test Site (Central Swiss Alps). An acrylic resin doped with fluorescent agents was used to impregnate the microporous granitic matrix in situ around an injection borehole, and samples were obtained by overcoring. The 3-D structure of the porespace, represented by microcracks, was studied by U-stage fluorescence microscopy. Petrophysical methods, including the determination of porosity, permeability and P -wave velocity, were also applied. Investigations were conducted both on samples that were impregnated in situ and on non-impregnated samples, so that natural features could be distinguished from artefacts. The investigated deformed granites display complex microcrack populations representing a polyphase deformation at varying conditions. The crack population is dominated by open cleavage cracks in mica and grain boundary cracks. The porosity of non-impregnated samples lies slightly above 1 per cent, which is 2–2.5 times higher than the in situ porosity obtained for impregnated samples. Measurements of seismic velocities (Vp ) on spherical rock samples as a function of confining pressure, spatial direction and water saturation for both non-impregnated and impregnated samples provide further constraints on the distinction between natural and induced crack types. The main conclusions are that (1) an interconnected network of microcracks exists in the whole granitic matrix, irrespective of the distance to ductile and brittle shear zones, and (2) conventional laboratory methods overestimate the matrix porosity. Calculations of contaminant transport through fractured media often rely on matrix diffusion as a retardation mechanism.
Resumo:
Detector uniformity is a fundamental performance characteristic of all modern gamma camera systems, and ensuring a stable, uniform detector response is critical for maintaining clinical images that are free of artifact. For these reasons, the assessment of detector uniformity is one of the most common activities associated with a successful clinical quality assurance program in gamma camera imaging. The evaluation of this parameter, however, is often unclear because it is highly dependent upon acquisition conditions, reviewer expertise, and the application of somewhat arbitrary limits that do not characterize the spatial location of the non-uniformities. Furthermore, as the goal of any robust quality control program is the determination of significant deviations from standard or baseline conditions, clinicians and vendors often neglect the temporal nature of detector degradation (1). This thesis describes the development and testing of new methods for monitoring detector uniformity. These techniques provide more quantitative, sensitive, and specific feedback to the reviewer so that he or she may be better equipped to identify performance degradation prior to its manifestation in clinical images. The methods exploit the temporal nature of detector degradation and spatially segment distinct regions-of-non-uniformity using multi-resolution decomposition. These techniques were tested on synthetic phantom data using different degradation functions, as well as on experimentally acquired time series floods with induced, progressively worsening defects present within the field-of-view. The sensitivity of conventional, global figures-of-merit for detecting changes in uniformity was evaluated and compared to these new image-space techniques. The image-space algorithms provide a reproducible means of detecting regions-of-non-uniformity prior to any single flood image’s having a NEMA uniformity value in excess of 5%. The sensitivity of these image-space algorithms was found to depend on the size and magnitude of the non-uniformities, as well as on the nature of the cause of the non-uniform region. A trend analysis of the conventional figures-of-merit demonstrated their sensitivity to shifts in detector uniformity. The image-space algorithms are computationally efficient. Therefore, the image-space algorithms should be used concomitantly with the trending of the global figures-of-merit in order to provide the reviewer with a richer assessment of gamma camera detector uniformity characteristics.
Resumo:
Much of the craniofacial skeleton, such as the skull vault, mandible and midface, develops through direct, intramembranous ossification of the cranial neural crest (CNC) derived progenitor cells. Bmp-signaling plays critical roles in normal craniofacial development, and Bmp4 deficiency results in craniofacial abnormalities, such as cleft lip and palate. We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in the CNC. Conditional Bmp4 overexpression, using a tetracycline regulated Bmp4 gain of function allele, resulted in facial form changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4 induced genes (BIG) composed predominantly of transcriptional regulators controlling self-renewal, osteoblast differentiation, and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4, and Bmp7, resulted in complete or partial loss of multiple CNC derived skeletal elements revealing a critical requirement for Bmp-signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss of function mutants indicating similar Bmp-regulated target genes underlying facial form modulation and normal skeletal morphogenesis. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45g and Gata3 that was bound by Smad1/5 in the developing mandible revealing direct, Smad-mediated regulation. These data indicate that Bmp-signaling regulates craniofacial skeletal development and facial form by balancing self-renewal and differentiation pathways in CNC progenitors.
Resumo:
This participatory action-research project addressed the hypothesis that strengthened community and women's capacity for self-development will lead to action to address maternal health problems and the prevention of maternal morbidity and mortality in Mali. Research objectives were: (1) to undertake a comparative cross-sectional study of the association of community capacity with improved maternal health in rural areas of Sanando, Mali, where capacity building interventions have taken place in some villages but not in others. (2) to describe women's maternal health status, access to and use of maternal health services given their residence in program or comparison communities.^ The participatory action research project was an integrated qualitative and quantitative study using participatory rural appraisal exercises, semi-structured group interviews and a cross-sectional survey.^ Factors related to community capacity for self-development were identified: community harmony; an understanding of the benefits of self-development; dynamic leadership; and a structure to implement collective activities.^ A distinct difference between the program and comparison villages was the commitment to train and support traditional birth attendants (TBAs). The TBAs in the program villages work in the context of the wider, integrated self-development program and, 10 years after their initial training, the TBAs continue to practice.^ Many women experience labor and childbirth alone or are attended by an untrained relative in both program and comparison villages. Nevertheless a significant change is apparent, with more women in program villages than in comparison villages being assisted by the TBAs. The delivery practices of the TBAs reveal the positive impact of their training in the "three cleans" (clean hands of the assistant, clean delivery surface and clean cord-cutting). The findings of this study indicate a significant level of unmet need for child spacing methods in all villages.^ The training and support of TBAs in the program villages yielded significant improvements in their delivery practices, and resulting outcomes for women and infants. However, potential exists for further community action. Capacities for self-development have not yet been directed toward an action plan encompassing other Safe Motherhood interventions, including access to family planning services and emergency obstetric care services. ^
Resumo:
The light scattering properties of oceanic particles have been suggested as an alternative index of phytoplankton biomass than chlorophyll-a concentration (chl-a), with the benefit of being less sensitive to physiological forcings (e.g., light and nutrients) that alter the intracellular pigment concentrations. The drawback of particulate scattering is that it is not unique to phytoplankton. Nevertheless, field studies have demonstrated that, to first order, the particulate beam-attenuation coefficient (c(p)) can track phytoplankton biomass. The relationship between c(p) and the particulate backscattering coefficient (b(bp)), a property retrievable from space, has not been fully evaluated, largely due to a lack of open-ocean field observations. Here, we present extensive data on inherent optical properties from the Equatorial Pacific surface waters and demonstrate a remarkable coherence in b(bp) and c(p). Coincident measurements of particle size distributions (PSDs) and optical properties of size-fractionated samples indicate that this covariance is due to both the conserved nature of the PSD and a greater contribution of phytoplankton-sized particles to b(bp) than theoretically predicted. These findings suggest that satellite-derived b(bp)could provide similar information on phytoplankton biomass in the open ocean as c(p).
Resumo:
This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro- satellite platform. The results have been produced in the frame of ESA’s "As sessment Study for Space Based Space Surveillance Demonstration Mission (Phase A) " performed by the Airbus DS consortium. Space Surveillance and Tracking is part of Space Situational Awareness (SSA) and covers the detection, tracking and cataloguing of spa ce debris and satellites. Derived SST services comprise a catalogue of these man-made objects, collision warning, detection and characterisation of in-orbit fragmentations, sub-catalogue debris characterisation, etc. The assessment of SBSS in an SST system architecture has shown that both an operational SBSS and also already a well - designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond - LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing and fusion, etc.) until the final products can be offered to the users. The presented SBSS system concept takes the ESA SST System Requirements (derived within the ESA SSA Preparatory Program) into account and aims at fulfilling some of the SST core requirements in a stand-alone manner. The evaluation of the concept has shown that an according solution can be implemented with low technological effort and risk. The paper presents details of the system concept, candidate micro - satellite platforms, the observation strategy and the results of performance simulations for GEO coverage and cataloguing accuracy
Resumo:
First indications of prehistoric sites in lakes of Switzerland go back more than 200 years and in 1854 Ferdinand Keller (1800-1881) published his famous book The Celtic Pile Dwellings in Swiss Lakes. Since these times, large-scale rescue excavations as well as survey and research projects have extended our knowledge about Neolithic and Bronze Age settlements in lakes, bogs and rivers around the European Alps. In 2011 a representative choice of 111 sites out of nearly 1000 in six countries around the Alps (Austria, France, Germany, Italy, Slovenia and Switzerland) were recognized by the UNESCO World Heritage committee as serial World Heritage. The lecture will give a general overview on prehistoric lake dwellings around the Alps (distribution, types of lakes/bogs and environment of sites, chronology/cultural units in the time scale 5300 to 800 BC) and present examples of well-documented settlement structures. The intense use of dendrochronological dating allowed the building up of a well-fixed chronological framework. In some cases dendrochronology is the basis for year-by-year reconstructions of prehistoric village biographies and detailed insights in the life cycle of early agrarian settlements. Beside these local events the grouped repartition of lake dwelling remains on the time scale makes a more global correlation between Holocene lake levels and the preservation of archaeological layers likely.
Resumo:
It is a challenge to measure the impact of releasing data to the public since the effects may not be directly linked to particular open data activities or substantial impact may only occur several years after publishing the data. This paper proposes a framework to assess the impact of releasing open data by applying the Social Return on Investment (SROI) approach. SROI was developed for organizations intended to generate social and environmental benefits thus fitting the purpose of most open data initiatives. We link the four steps of SROI (input, output, outcome, impact) with the 14 high-value data categories of the G8 Open Data Charter to create a matrix of open data examples, activities, and impacts in each of the data categories. This Impact Monitoring Framework helps data providers to navigate the impact space of open data laying out the conceptual basis for further research.
Resumo:
A discussion of nonlinear dynamics, demonstrated by the familiar automobile, is followed by the development of a systematic method of analysis of a possibly nonlinear time series using difference equations in the general state-space format. This format allows recursive state-dependent parameter estimation after each observation thereby revealing the dynamics inherent in the system in combination with random external perturbations.^ The one-step ahead prediction errors at each time period, transformed to have constant variance, and the estimated parametric sequences provide the information to (1) formally test whether time series observations y(,t) are some linear function of random errors (ELEM)(,s), for some t and s, or whether the series would more appropriately be described by a nonlinear model such as bilinear, exponential, threshold, etc., (2) formally test whether a statistically significant change has occurred in structure/level either historically or as it occurs, (3) forecast nonlinear system with a new and innovative (but very old numerical) technique utilizing rational functions to extrapolate individual parameters as smooth functions of time which are then combined to obtain the forecast of y and (4) suggest a measure of resilience, i.e. how much perturbation a structure/level can tolerate, whether internal or external to the system, and remain statistically unchanged. Although similar to one-step control, this provides a less rigid way to think about changes affecting social systems.^ Applications consisting of the analysis of some familiar and some simulated series demonstrate the procedure. Empirical results suggest that this state-space or modified augmented Kalman filter may provide interesting ways to identify particular kinds of nonlinearities as they occur in structural change via the state trajectory.^ A computational flow-chart detailing computations and software input and output is provided in the body of the text. IBM Advanced BASIC program listings to accomplish most of the analysis are provided in the appendix. ^