1000 resultados para Multiperformance optimization
Resumo:
A novel smoke sensor was used to realize smoke feedback control on a diesel engine. The controller design based on a combination of PI control algorithm and the engine performance optimization is described. Experimental results demonstrate how this control system behave to meet both of the speed and smoke requirements during engine transients.
Resumo:
Cascaded 4×4 SOA switches with on-chip power monitoring exhibit potential for lowpower 16×16 integrated switches. Cascaded operation at 10Gbit/s with an IPDR of 8.5dB and 79% lower power consumption than equivalent all-active switches is reported © 2013 OSA.
Resumo:
This paper introduces a new version of the multiobjective Alliance Algorithm (MOAA) applied to the optimization of the NACA 0012 airfoil section, for minimization of drag and maximization of lift coefficients, based on eight section shape parameters. Two software packages are used: XFoil which evaluates each new candidate airfoil section in terms of its aerodynamic efficiency, and a Free-Form Deformation tool to manage the section geometry modifications. Two versions of the problem are formulated with different design variable bounds. The performance of this approach is compared, using two indicators and a statistical test, with that obtained using NSGA-II and multi-objective Tabu Search (MOTS) to guide the optimization. The results show that the MOAA outperforms MOTS and obtains comparable results with NSGA-II on the first problem, while in the other case NSGA-II is not able to find feasible solutions and the MOAA is able to outperform MOTS. © 2013 IEEE.
Resumo:
Genetic algorithms (GAs) have been used to tackle non-linear multi-objective optimization (MOO) problems successfully, but their success is governed by key parameters which have been shown to be sensitive to the nature of the particular problem, incorporating concerns such as the numbers of objectives and variables, and the size and topology of the search space, making it hard to determine the best settings in advance. This work describes a real-encoded multi-objective optimizing GA (MOGA) that uses self-adaptive mutation and crossover, and which is applied to optimization of an airfoil, for minimization of drag and maximization of lift coefficients. The MOGA is integrated with a Free-Form Deformation tool to manage the section geometry, and XFoil which evaluates each airfoil in terms of its aerodynamic efficiency. The performance is compared with those of the heuristic MOO algorithms, the Multi-Objective Tabu Search (MOTS) and NSGA-II, showing that this GA achieves better convergence.
Resumo:
An optimization process has been used to design an ultra-low count fan outlet guide vane with an unconventional leading edge profile to reduce the interaction noise. Computational fluid dynamics has been used to predict the aerodynamic and acoustic performance of the stator vane. The final stator design has been built and tested in a representative fan stage rig to determine its tone noise characteristics. The stator vane is found to give significant tone noise reduction at the fundamental blade passing frequency at cut-back in line with design expectations. Detailed comparisons of predicted circumferential and radial modes levels against measured mode detection data are also presented. A good agreement was found between numerical predictions and experimental data.
Resumo:
In view of its special features, the brushless doubly fed induction generator (BDFIG) shows high potentials to be employed as a variable-speed drive or wind generator. However, the machine suffers from low efficiency and power factor and also high level of noise and vibration due to spatial harmonics. These harmonics arise mainly from rotor winding configuration, slotting effects, and saturation. In this paper, analytical equations are derived for spatial harmonics and their effects on leakage flux, additional loss, noise, and vibration. Using the derived equations and an electromagnetic-thermal model, a simple design procedure is presented, while the design variables are selected based on sensitivity analyses. A multiobjective optimization method using an imperialist competitive algorithm as the solver is established to maximize efficiency, power factor, and power-to-weight ratio, as well as to reduce rotor spatial harmonic distortion and voltage regulation simultaneously. Several constraints on dimensions, magnetic flux densities, temperatures, vibration level, and converter voltage and rating are imposed to ensure feasibility of the designed machine. The results show a significant improvement in the objective function. Finally, the analytical results of the optimized structure are validated using finite-element method and are compared to the experimental results of the D180 frame size prototype BDFIG. © 1982-2012 IEEE.
Resumo:
In this paper we study the optimization of interleaved Mach-Zehnder silicon carrier depletion electro-optic modulator. Following the simulation results we demonstrate a phase shifter with the lowest figure of merit (modulation efficiency multiplied by the loss per unit length) 6.7 V-dB. This result was achieved by reducing the junction width to 200 nm along the phase-shifter and optimizing the doping levels of the PN junction for operation in nearly fully depleted mode. The demonstrated low FOM is the result of both low V(π)L of ~0.78 Vcm (at reverse bias of 1V), and low free carrier loss (~6.6 dB/cm for zero bias). Our simulation results indicate that additional improvement in performance may be achieved by further reducing the junction width followed by increasing the doping levels.
Resumo:
We design, optimize and demonstrate a highly efficient carrier-depletion silicon Mach-Zehnder modulator with very low VπL of ~0.2Vcm. Design consideration, fabrication process and experimental results will be presented. © OSA 2013.
Resumo:
The paper addresses the problem of low-rank trace norm minimization. We propose an algorithm that alternates between fixed-rank optimization and rank-one updates. The fixed-rank optimization is characterized by an efficient factorization that makes the trace norm differentiable in the search space and the computation of duality gap numerically tractable. The search space is nonlinear but is equipped with a Riemannian structure that leads to efficient computations. We present a second-order trust-region algorithm with a guaranteed quadratic rate of convergence. Overall, the proposed optimization scheme converges superlinearly to the global solution while maintaining complexity that is linear in the number of rows and columns of the matrix. To compute a set of solutions efficiently for a grid of regularization parameters we propose a predictor-corrector approach that outperforms the naive warm-restart approach on the fixed-rank quotient manifold. The performance of the proposed algorithm is illustrated on problems of low-rank matrix completion and multivariate linear regression. © 2013 Society for Industrial and Applied Mathematics.
Resumo:
This paper provides an introduction to the topic of optimization on manifolds. The approach taken uses the language of differential geometry, however,we choose to emphasise the intuition of the concepts and the structures that are important in generating practical numerical algorithms rather than the technical details of the formulation. There are a number of algorithms that can be applied to solve such problems and we discuss the steepest descent and Newton's method in some detail as well as referencing the more important of the other approaches.There are a wide range of potential applications that we are aware of, and we briefly discuss these applications, as well as explaining one or two in more detail. © 2010 Springer -Verlag Berlin Heidelberg.
Resumo:
The optimization of a near-circular low-Earth-orbit multispacecraft refueling problem is studied. The refueling sequence, service time, and orbital transfer time are used as design variables, whereas the mean mission completion time and mean propellant consumed by orbital maneuvers are used as design objectives. The J2 term of the Earth's nonspherical gravity perturbation and the constraints of rendezvous time windows are taken into account. A hybridencoding genetic algorithm, which uses normal fitness assignment to find the minimum mean propellant-cost solution and fitness assignment based on the concept of Pareto-optimality to find multi-objective optimal solutions, is presented. The proposed approach is demonstrated for a typical multispacecraft refueling problem. The results show that the proposed approach is effective, and that the J2 perturbation and the time-window constraints have considerable influences on the optimization results. For the problems in which the J2 perturbation is not accounted for, the optimal refueling order can be simply determined as a sequential order or as the order only based on orbitalplane differences. In contrast, for the problems that do consider the J2 perturbation, the optimal solutions obtained have a variety of refueling orders and use the drift of nodes effectively to reduce the propellant cost for eliminating orbital-plane differences. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
In this study, optimization of operational conditions of a submerged membrane bioreactor treating municipal waste-water was studied. Mixed liquid suspended solid (MLSS), membrane flux (J(v)), aeration (Q), ratio of pumping, time to break time (t(p)/t(b)), and ratio of up flow area to down flow area (A Ad) were chosen as the easily manipulable parameters to study their effects on removal efficiency and membrane fouling. Totally, 16 different runs were designed to compare and select the best combination of the 5 parameters. The results showed that the optimal operational conditions were MLSS = 7g(.)L(-1), J(v) = 10L(.)m(-2.)h(-1), Q = 6 m(3.)h(-1), t(p)/t(b)= 4 min/1 min, and A(r)/A(d) = 1.7 m(2)/m(2). Under such conditions, the SMBR could achieve a double win of high removal efficiency and low membrane fouling.