921 resultados para High Power Laser Beam
Resumo:
Laser-induced damages to TiO2 single layers and TiO2/SiO2 high reflectors at laser wavelength of 1064 nm, 800 run, 532 urn, and pulse width of 12 ns, 220 ps, 50 fs, 8 ns are investigated. All films are prepared by electron beam evaporation. The relations among microstructure, chemical composition, optical properties and laser-induced damage threshold (LIDT), have been researched. The dependence of damage mechanism on laser wavelength and pulse width is discussed. It is found that from 1064 nm to 532 nm, LIDT is mainly absorption related, which is determined by film's extinction coefficient and stoichiometric defects. The rapid decrease of LIDT at 800 nm is due to the pulse width factor. TiO2 coatings are mainly thermally by damaged at long pulse (tau >= 220 ps). The damage shows ablation feature at 50 fs. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A dynamic beam propagation model allows design optimization of high power low divergence tapered waveguide lasers. The model is extended to include spatially-resolved temperature profiles and a temperature dependent gain. Using this model, design parameters such as the optimum facet reflectivity, taper angle, and waveguide dimension can be calculated for low far-field divergence and high continuous wave power.
Resumo:
Simultaneous high power (2W), high modulation speed (1Gb/s) and high modulation efficiency (14 W/A) operation of a two-electrode tapered laser is reported. © 2011 IEEE.
Resumo:
During its lifetime in the core, the cladding of an Accelerator Driven Subcritical Reactor (ADSR) fuel pin is expected to experience variable stresses due to frequent interruptions in the accelerator proton beam. This paper investigates the thermal fatigue damage in the cladding due to repetitive and unplanned beam interruptions under certain operational conditions. Beam trip data was obtained for four operating high power proton accelerators, among which the Spallation Neutron Source (SNS) superconducting accelerator was selected for further analysis. 9Cr-1Mo-Nb-V (T91) steel was selected as the cladding material because of its proven compatibility with proposed ADSR design concepts. The neutronic, thermal and stress analyses were performed using the PTS-ADS, a code that has been specifically developed for studying the dynamic response to beam-induced transients in accelerator driven subcritical systems. The lifetime of the fuel cladding in the core was estimated for three levels of allowed pin power and specific operating conditions. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The generation of ultrashort optical pulses by semiconductor lasers has been extensively studied for many years. A number of methods, including gain-/Q-switching and different types of mode locking, have been exploited for the generation of picosecond and sub-picosecond pulses [1]. However, the shortest pulses produced by diode lasers are still much longer and weaker than those that are generated by advanced mode-locked solid-state laser systems [2]. On the other hand, an interesting class of devices based on superradiant emission from multiple contact diode laser structures has also been recently reported [3]. Superradiance (SR) is a transient quantum optics phenomenon based on the cooperative radiative recombination of a large number of oscillators, including atoms, molecules, e-h pairs, etc. SR in semiconductors can be used for the study of fundamental properties of e-h ensembles such as photon-mediated pairing, non-equilibrium e-h condensation, BSC-like coherent states and related phenomena. Due to the intrinsic parameters of semiconductor media, SR emission typically results in the generation of a high-power optical pulse or pulse train, where the pulse duration can be much less than 1 ps, under optimised bias conditions. Advantages of this technique over mode locking in semiconductor laser structures include potentially shorter pulsewidths and much larger peak powers. Moreover, the pulse repetition rate of mode-locked pulses is fixed by the cavity round trip time, whereas the repetition rate of SR pulses is controlled by the current bias and can be varied over a wide range. © 2012 IEEE.
Resumo:
We report a 2 μm ultrafast solid-state Tm: Lu2O3 laser, mode-locked by single-layer graphene, generating transform-limited ∼ 410 fs pulses, with a spectral width ∼ 11.1 nm at 2067 nm. The maximum average output power is 270 mW, at a pulse repetition frequency of 110 MHz. This is a convenient high-power transform-limited ultrafast laser at 2 μm for various applications, such as laser surgery and material processing. © 2013 American Institute of Physics.
Resumo:
This paper reviews recent advances in superradiant (SR) emission in semiconductors at room temperature, a process which has been shown to enable the generation on demand of high power picosecond or subpicosecond pulses across a range of different wavelengths. The different characteristic features of SR emission from semiconductor devices with bulk, quantum-well, and quantum-dot active regions are outlined, and particular emphasis is placed on comparing the characteristic features of SR with those of lasing. Finally, potential applications of SR pulses are discussed. © 1995-2012 IEEE.
Resumo:
A time multiplexed rectangular Zernike modal wavefront sensor based on a nematic phase-only liquid crystal spatial light modulator and specially designed for a high power two-electrode tapered laser diode which is a compact and novel free space optical communication source is used in an adaptive beam steering free space optical communication system, enabling the system to have 1.25 GHz modulation bandwidth, 4.6° angular coverage and the capability of sensing aberrations within the system and caused by atmosphere turbulence up to absolute value of 0.15 waves amplitude and correcting them in one correction cycle. Closed-loop aberration correction algorithm can be implemented to provide convergence for larger and time varying aberrations. Improvement of the system signal-to-noise-ratio performance is achieved by aberration correction. To our knowledge, it is first time to use rectangular orthonormal Zernike polynomials to represent balanced aberrations for high power rectangular laser beam in practice. © 2014 IEEE.
Resumo:
Butt joint line-defect-waveguide microlasers are demonstrated on photonic crystal slabs with airholes in a triangular lattice. Such microlaser is designed to increase the output power from the waveguide edge directly. The output power is remarkably enhanced to 214 times higher by introducing chirped structure in the output waveguide. The lasing mode operates in the linear dispersion region of the output waveguide so that the absorption loss due to the band-edge effect is reduced. The laser resonance is illustrated theoretically using the finite difference time domain method. A practical high power efficiency of 20% is obtained in this microlaser. (C) 2008 American Institute of Physics.
Resumo:
A fundamental mode Nd YAG laser is experimentally demonstrated with a stagger pumped laser module and a special resonator. The rod is pumped symmetrically by staggered bar modules. A dynamic fundamental mode is achieved with the special resonator under different pump levels. A maximal continuous wave output of 61 W (M-2 = 1.4) is achieved with a single rod. An average output of 47 W, pulse width of 54 ns, pulse energy of 4.7 mJ and peak power of 87 kW are obtained under the Q-switched operation of 10 kHz.
Resumo:
In GaAs-based light-emitting diode (LED) or laser diode (LD), the forward voltage (V) will decrease linearly with the increasing junction temperature (T). This can be used as a convenient method to measure the junction temperature. In GaN-based LED, the relationship is linear too. But in GaN-based LD, the acceptor M (g) in p-GaN material can not ionize completely at-room temperature, and the carrier density will change with temperature. But we find finally that, this change won't lead to a nonlinear relationship of V-T. Our experiments show that it is Linear too.
Resumo:
By inclining the injection stripe of a multiple layer stacked self-assembled InAs quantum dot (SAQD) laser diode structure of 6degrees with respect to the facets, high-power and broad-band superluminescent diodes (SLDs) have been fabricated. It indicates that high-performance SLD could be easily realized by using SAQD as the active region.
Resumo:
The novel Si stripixel detector, developed at BNL (Brookhaven National Laboratory), has been applied in the development of a prototype Si strip detector system for the PHENIX Upgrade at RHIC. The Si stripixel detector can generate X-Y two-dimensional (2D) position sensitivity with single-sided processing and readout. Test stripixel detectors with pitches of 85 and 560 mu m have been subjected to the electron beam test in a SEM set-up, and to the laser beam test in a lab test fixture with an X-Y-Z table for laser scanning. Test results have shown that the X and Y strips are well isolated from each other, and 2D position sensitivity has been well demonstrated in the novel stripixel detectors. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Self-organized InAs quantum dots (QDs) have been fabricated by molecular beam epitaxy. The authors try to use a slow positron beam to detect defects in and around self-organized QDs, and point defects are observed in GaAs cap layer above QDs. For the self-organized InAs QDs without strain-reducing layer, it is free of defects. However, by introducing a strain-reducing layer, the density of point defects around larger sized InAs QDs increased. The above results suggest that low energy positron beam measurements may be a good approach to detect depth profiles of defects in QD materials. (c) 2007 American Institute of Physics.