615 resultados para Fenótipo MDR
Resumo:
Colistin, a cationic polypeptide antibiotic, has reappeared in human medicine as a last-line treatment option for multidrug-resistant Gram-negative bacteria (MDR-GNB). Colistin is widely used in veterinary medicine for the treatment of gastrointestinal infections caused by Enterobacteriaceae. GNB resistant to colistin owing to chromosomal mutations have already been reported both in human and veterinary medicine, however several recent studies have just identified a plasmid-mediated mcr-1 gene encoding for colistin resistance in Escherichia coli colistin resistance. The discovery of a non-chromosomal mechanism of colistin resistance in E. coli has led to strong reactions in the scientific community and to concern among physicians and veterinarians. Colistin use in food animals and particularly in pig production has been singled out as responsible for the emergence of colistin resistance. The present review will focus mainly on the possible link between colistin use in pigs and the spread of colistin resistance in Enterobacteriaceae. First we demonstrate a possible link between Enterobacteriaceae resistance emergence and oral colistin pharmacokinetics/pharmacodynamics and its administration modalities in pigs. We then discuss the potential impact of colistin use in pigs on public health with respect to resistance. We believe that colistin use in pig production should be re-evaluated and its dosing and usage optimised. Moreover, the search for competitive alternatives to using colistin with swine is of paramount importance to preserve the effectiveness of this antibiotic for the treatment of MDR-GNB infections in human medicine.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
INTRODUCTION: Between 1998 and 2010, S. Typhi was an uncommon cause of bloodstream infection (BSI) in Blantyre, Malawi and it was usually susceptible to first-line antimicrobial therapy. In 2011 an increase in a multidrug resistant (MDR) strain was detected through routine bacteriological surveillance conducted at Queen Elizabeth Central Hospital (QECH).
METHODS: Longitudinal trends in culture-confirmed Typhoid admissions at QECH were described between 1998-2014. A retrospective review of patient cases notes was conducted, focusing on clinical presentation, prevalence of HIV and case-fatality. Isolates of S. Typhi were sequenced and the phylogeny of Typhoid in Blantyre was reconstructed and placed in a global context.
RESULTS: Between 1998-2010, there were a mean of 14 microbiological diagnoses of Typhoid/year at QECH, of which 6.8% were MDR. This increased to 67 in 2011 and 782 in 2014 at which time 97% were MDR. The disease predominantly affected children and young adults (median age 11 [IQR 6-21] in 2014). The prevalence of HIV in adult patients was 16.7% [8/48], similar to that of the general population (17.8%). Overall, the case fatality rate was 2.5% (3/94). Complications included anaemia, myocarditis, pneumonia and intestinal perforation. 112 isolates were sequenced and the phylogeny demonstrated the introduction and clonal expansion of the H58 lineage of S. Typhi.
CONCLUSIONS: Since 2011, there has been a rapid increase in the incidence of multidrug resistant, H58-lineage Typhoid in Blantyre. This is one of a number of reports of the re-emergence of Typhoid in Southern and Eastern Africa. There is an urgent need to understand the reservoirs and transmission of disease and how to arrest this regional increase.
Resumo:
Pseudomonas aeruginosa is a major cause of morbidity and mortality in cystic fibrosis patients. This study compares the antimicrobial susceptibility of 153 P. aeruginosa isolates from the United Kingdom (UK) (n=58), Belgium (n=44), and Germany (n=51) collected from 120 patients during routine visits over the 2006-2012 period. MICs were measured by broth microdilution. Genes encoding extended spectrum β-lactamases (ESBL), metallo-β-lactamases and carbapenemases were detected by PCR. Pulsed Field Gel Electrophoresis and Multi-Locus Sequence Typing were performed on isolates resistant to ≥ 3 antibiotic classes among penicillins/cephalosporins, carbapenems, fluoroquinolones, aminoglycosides, polymyxins. Based on EUCAST/CLSI breakpoints, susceptibility was ≤ 30%/≤ 40% (penicillins, ceftazidime, amikacin, ciprofloxacin), 44-48%/48-63% (carbapenems), 72%/72% (tobramycin), and 92%/78% (colistin) independently of patient's age. Sixty percent of strains were multidrug resistant (MDR; European Centre for Disease prevention and Control criteria). Genes encoding ESBL (most prevalent BEL, PER, GES, VEB, CTX-M, TEM, SHV, and OXA), metallo β-lactamases (VIM, IMP, NDM), or carbapenemases (OXA-48, KPC) were not detected. The Liverpool Epidemic Strain (LES) was prevalent in UK isolates only (75% of MDR isolates). Four MDR ST958 isolates were found spread over the three countries. The other MDR clones were evidenced in ≤ 3 isolates and localized in a single country. A new sequence type (ST2254) was discovered in one MDR isolate in Germany. Clonal and non-clonal isolates with different susceptibility profiles were found in 21 patients. Thus, resistance and MDR are highly prevalent in routine isolates from 3 countries, with carbapenem (meropenem), tobramycin and colistin remaining the most active drugs.
Resumo:
To minimize the side effects and the multidrug resistance (MDR) arising from daunorubicin (DNR) treatment of malignant lymphoma, a chemotherapy formulation of cysteamine-modified cadmium tellurium (Cys-CdTe) quantum dots coloaded with DNR and gambogic acid (GA) nanoparticles (DNR-GA-Cys-CdTe NPs) was developed. The physical property, drug-loading efficiency and drug release behavior of these DNR-GA-Cys-CdTe NPs were evaluated, and their cytotoxicity was explored by 3-[4,5-dimethylthiazol-2-y1]-2,5-diphenyltetrazolium bromide assay. These DNR-GA-Cys-CdTe NPs possessed a pH-responsive behavior, and displayed a dose-dependent antiproliferative activity on multidrug-resistant lymphoma Raji/DNR cells. The accumulation of DNR inside the cells, revealed by flow cytometry assay, and the down-regulated expression of P-glycoprotein inside the Raji/DNR cells measured by Western blotting assay indicated that these DNR-GA-Cys-CdTe NPs could minimize the MDR of Raji/DNR cells. This multidrug delivery system would be a promising strategy for minimizing MDR against the lymphoma.
Resumo:
As tauopatias, grupo onde se inclui a doença de Alzheimer (AD), são caracterizadas pela deposição intracelular de emaranhados neurofibrilares (NFTs), compostos principalmente por formas hiperfosforiladas da proteína Tau, uma proteína que se associa aos microtúbulos. Os mecanismos moleculares subjacentes à neurotoxicidade induzida por Tau não são ainda claros. Drosophila melanogaster tem sido usada para modelar diversas doenças neurodegenerativas humanas, incluindo as tauopatias. Neste trabalho foi usado o sistema visual de Drosophila como modelo para identificar os passos que podem levar à acumulação de Tau em Tauopatias. Durante o desenvolvimento do olho de Drosophila, a expressão ectópica de hTau induz um olho rugoso, em consequência da neurotoxicidade, e que pode ser utilizado para identificar modificadores do fenótipo. A fosfatase codificada por string /cdc25 (stg), um regulador universal da transição G2/M, foi previamente identificada como um supressor da neurotoxicidade associada à expressão da proteina Tau. No entanto, os mecanismos moleculares que estão na base desta interação genética nunca foram estudados, desconhecendo-se também se a atividade fosfatase de Stg/Cdc25 é essencial para modular os níveis de fosforilação de Tau. O objetivo deste projeto consistiu em elucidar os mecanismos que se encontram na base da interação Stg-Tau. Para alcançar este objectivo, usou-se uma abordagem genética e bioquímica. Os resultados obtidos sugerem que Stg é um possível modulador da neurotoxicidade de Tau.
Resumo:
The Mediterranean species Cynara cardunculus L. is recognized in the traditional medicine, for their hepatoprotective and choleretic effects. Biomass of C. cardunculus L. var. altilis (DC), or cultivated cardoon, may be explored not only for the production of energy and pulp fibers, but also for the extraction of bioactive compounds. The chemical characterization of extractable components, namely terpenic and phenolic compounds, may valorize the cultivated cardoon plantation, due to their antioxidant, antitumoral and antimicrobial activities. In this study, the chemical composition of lipophilic and phenolic fractions of C. cardunculus L. var. altilis (DC), cultivated in the south of Portugal (Baixo Alentejo region) was characterized in detail, intending the integral valorization of its biomass. The biological activity of cultivated cardoon extracts was evaluated in terms of antioxidant, human tumor cell antiproliferative and antibacterial effects. Gas chromatography-mass spectrometry (GC-MS) was used for the chemical analysis of lipophilic compounds. Sixty-five lipophilic compounds were identified, from which 1 sesquiterpene lactone and 4 pentacyclic triterpenes were described, for the first time, as cultivated cardoon components, such as: deacylcynaropicrin, acetates of β- and α-amyrin, lupenyl acetate and ψ-taraxasteryl acetate. Sesquiterpene lactones were the major family of lipophilic components of leaves (≈94.5 g/kg), mostly represented by cynaropicrin (≈87.4 g/kg). Pentacyclic triterpenes were also detected, in considerably high contents, in the remaining parts of cultivated cardoon, especially in the florets (≈27.5 g/kg). Taraxasteryl acetate was the main pentacyclic triterpene (≈8.9 g/kg in florets). High pressure liquid chromatography-mass spectrometry (HPLC-MS) was utilized for the chemical analysis of phenolic compounds. Among the identified 28 phenolic compounds, eriodictyol hexoside was reported for the first time as C. cardunculus L. component, and 6 as cultivated cardoon components, namely 1,4-di-O-caffeoylquinic acid, naringenin 7-O-glucoside, naringenin rutinoside, naringenin, luteolin acetylhexoside and apigenin acetylhexoside. The highest content of the identified phenolic compounds was observed in the florets (≈12.6 g/kg). Stalks outer part contained the highest hydroxycinnamic acids abundance (≈10.3 g/kg), and florets presented the highest flavonoids content (≈10.3 g/kg). The antioxidant activity of phenolic fraction was examined through 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. Stalks outer part, and receptacles and bracts extracts demonstrated the highest antioxidant effect on DPPH (IC50 of 34.35 μg/mL and 35.25 μg/mL, respectively). (cont.) abstract (cont.) The DPPH scavenging effect was linearly correlated with the total contents of hydroxycinnamic acids (r = -0.990). The in vitro antiproliferative activity of cultivated cardoon lipophilic and phenolic extracts was evaluated on a human tumor cells line of triple-negative breast cancer (MDA-MB-231), one of the most refractory human cancers to conventional therapeutics. After 48 h of exposition, leaves lipophilic extract showed higher inhibitory effect (IC50 = 10.39 μg/mL) than florets lipophilic extract (IC50 = 315.22 μg/mL), upon MDA-MB-231 cellular viability. Pure compound of cynaropicrin, representative of the main compound identified in leaves lipophilic extract, also prevented the cell proliferation of MDA-MB-231 (IC50 = 17.86 μM). MDA-MB-231 cells were much more resistant to the 48 h- treatment with phenolic extracts of stalks outer part (IC50 = 3341.20 μg/mL) and florets (IC50 > 4500 μg/mL), and also with the pure compound of 1,5-di-O-caffeoylquinic acid (IC50 = 1741.69 μM). MDA-MB-231 cells were exposed, for 48 h, to the respective IC50 concentrations of leaves lipophilic extract and pure compound of cynaropicrin, in order to understand their ability in modelling cellular responses, and consequently important potentially signaling pathways for the cellular viability decrease. Leaves lipophilic extract increased the caspase-3 enzymatic activity, contrarily to pure compound of cynaropicrin. Additionally, leaves lipophilic extract and pure compound of cynaropicrin caused G2 cell cycle arrest, possibly by upregulating the p21Waf1/Cip1 and the accumulation of phospho-Tyr15-CDK1 and cyclin B1. The inhibitory effects of leaves lipophilic extract and cynaropicrin pure compound, against the MDA-MB-231 cell proliferation, may also be related to the downregulation of phospho-Ser473-Akt. The antibacterial activity of cultivated cardoon lipophilic and phenolic extracts was assessed, for the first time, on two multidrug-resistant bacteria, such as the Gram-negative Pseudomonas aeruginosa PAO1 and the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), two of the main bacteria responsible for health care-associated infections. Accordingly, the minimum inhibitory concentrations (MIC) were determined. Lipophilic and phenolic extracts of florets did not have antibacterial activity on P. aeruginosa PAO1 and MRSA (MIC > 2048 μg/mL). Leaves lipophilic extract did not prevent the P. aeruginosa PAO1 growth, but pure compound of cynaropicrin was slightly active (MIC = 2048 μg/mL). Leaves lipophilic extract and pure compound of cynaropicrin blocked MRSA growth (MIC of 1024 and 256 μg/mL, respectively). The scientific knowledge revealed in this thesis, either by the chemical viewpoint, or by the biological viewpoint, contributes for the valorization of C. cardunculus L. var. altilis (DC) biomass. Cultivated cardoon has potential to be exploited as source of bioactive compounds, in conciliation with other valorization pathways, and Portuguese traditional cheeses manufacturing.
Resumo:
Os microRNAs (miRNAs) são curtas cadeias de RNA não codificante, com cerca de 18 a 25 nucleotídeos, que regulam os níveis de mRNAs que são produzidos a partir de genes codificantes de proteínas. A descoberta dos miRNAs e a sua subsequente caracterização estrutural e funcional revelou a existência de um novo processo de regulação pós-transcricional da expressão génica em células eucarióticas que afeta uma grande variedade de funções celulares. A senescência acompanha o processo de evelhecimento dos organismos e é manifestada pela perda da capacidade proliferativa das células em resposta a diversos fatores de stress que desencadeiam alterações moleculares específicas. Na última década foram identificados e caracterizados vários miRNAs que participam na regulação do fenótipo da senescência celular, quer através da modulação de vias de sinalização endógenas que controlam a progressão do ciclo celular, quer através da secreção de factores de sinalização. Vários estudos têm também revelado a enorme potencialidade dos miRNAs como biomarcadores e alvos moleculares de novas abordagens terapêuticas. No futuro, é expectável que os avanços científicos possam ser transferidos para a prática clínica com vista a uma efetiva prevenção, vigilância e tratamento do envelhecimento prematuro e de doenças associadas ao envelhecimento.
Resumo:
A temática relativa às células estaminais inicia-se na década de 60 com a descoberta da primeira fonte viável destas células: a medula óssea. Diversos estudos permitiram definir a sua função de renovação tecidular e regeneração pós-dano, assim como a sua caraterização num grupo heterogéneo de células indiferenciadas, clonogénicas, definidas pela capacidade de auto-renovação e diferenciação em células maduras. Nos últimos anos, estas células ganharam popularidade face à alternativa terapêutica que representam para muitas doenças, tais como: diabetes, anomalias congénitas, danos do tecido nervoso, Parkinson, Alzheimer e outras alterações degenerativas, exposições pulpares, defeitos periodontais e perda do órgão dentário. Apesar do seu potencial terapêutico, apresentam vários efeitos adversos, especialmente em relação ao seu envolvimento direto (via transformação maligna das MSCs) e indireto (via efeito modulatório das MSCs) no desenvolvimento do cancro. Preconiza-se o seu uso no âmbito da Engenharia Tecidular, introduzindo o processo de regeneração tecidular através da utilização combinada de biomateriais e mediadores biológicos, a fim de proporcionar novas ferramentas para a medicina regenerativa. Mais tarde, tornou-se possível identificar cinco populações de células estaminais de origem dentária (DPSCs, SHEDs, DFPCs, SCAPs e PDLCs) que, para além da sua multipotência e capacidade de diferenciação, constituem fontes acessíveis para recolha. O isolamento destas células constitui ainda uma prática relativamente recente, na qual se torna preponderante isolar células com fenótipo pré-determinado e cultivá-las em meios de cultura adequados. Estudos comprovam que o método de isolamento e as condições de cultura utilizados podem dar origem a diferentes linhas celulares. A conservação é uma prática baseada na convicção de que a medicina regenerativa é o caminho mais promissor para o desenvolvimento da medicina personalizada. Informação adicional relativa à terapia com células estaminais é ainda necessária. Esta utiliza princípios de biomimética altamente desejáveis, pelo que os resultados obtidos têm vindo a despoletar grandes expetativas e a sua implementação na Engenharia Tecidular apresenta-se promissora.
Resumo:
A Amelogénese Imperfeita é uma anomalia hereditária que interfere no desenvolvimento do esmalte, pode variar em seu grau de intensidade, podendo afetar o esmalte tanto na sua qualidade, quanto na sua quantidade e em ambas as dentições. Existem pelo menos catorze subtipos diferentes de amelogénese imperfeita, sendo as do tipo hipoplásico, hipomaturado, hipocalcificado e hipoplásico ou hipomaturado com taurodontia segundo o seu fenótipo e quinze subtipos, segundo o seu modo de transmissão. Segundo a literatura, os pacientes com amelogénese imperfeita, independentemente do subtipo presente, apresentam complicações orais semelhantes: estética dentária comprometida, sensibilidade dentária e diminuição da dimensão vertical de oclusão. O tratamento destes pacientes assume um papel relevante, na medida em que requer cuidados especiais, já que esta doença acarreta, por norma, problemas psicológicos e interfere com o autoestima do individuo. É notória, atualmente, uma oferta variada de opções reabilitadoras ao dispor do Médico Dentista, que ajudarão o mesmo a restabelecer a estética e função. Os tratamentos são variados e por vezes complexos, podem ser desenvolvidos de forma conservadora ou invasiva. Contudo, a escolha do melhor tratamento será consequência da gravidade da patologia e de fatores inerentes ao próprio paciente. Neste estudo, abordamos as facetas, como uma alternativa reabilitadora, que com o avanço e melhorias na área da Dentisteria Estética, nomeadamente no que diz respeito à adesão à dentina, parecem ser uma opção credível. Assim, o objetivo desta dissertação é demonstrar e elucidar a reabilitação dos defeitos associados a esta doença com a utilização de facetas diretas e indiretas. Foram efetuadas pesquisas e consulta de livros, monografias, dissertações, artigos em base de dados como o Pubmed/Medline, para que conseguíssemos realizar uma discussão sobre o mesmo tema e desta forma encontrar uma adequada resposta a todas as nossas inquietações sobre esta questão.
Resumo:
Soft tissue sarcomas (STS) comprise a heterogenenous group of greater than 50 malignancies of putative mesenchymal cell origin and as such they may arise in diverse tissue types in various anatomical locations throughout the whole body. Collectively they account for approximately 1% of all human malignancies yet have a spectrum of aggressive behaviours amongst their subtypes. They thus pose a particular challenge to manage and remain an under investigated group of cancers with no generally applicable new therapies in the past 40 years and an overall 5-year survival rate that remains stagnant at around 50%. From September 2000 to July 2006 I undertook a full time post-doctoral level research fellowship at the MD Anderson Cancer Center, Houston, Texas, USA in the department of Surgical Oncology to investigate the biology of soft tissue sarcoma and test novel anti- sarcoma adenovirus-based therapy in the preclinical nude rat model of isolated limb perfusion against human sarcoma xenografts. This work, in collaboration with colleagues as indicated herein, led to a number of publications in the scientific literature furthering our understanding of the malignant phenotype of sarcoma and reported preclinical studies with wild-type p53, in a replication deficient adenovirus vector, and oncolytic adenoviruses administered by isolated limb perfusion. Additional collaborative and pioneering preclinical studies reported the molecular imaging of sarcoma response to systemically delivered therapeutic phage RGD-4c AAVP. Doxorubicin chemotherapy is the single most active broadly applicable anti-sarcoma chemotherapeutic yet only has an approximate 30% overall response rate with additional breakthrough tumour progression and recurrence after initial chemo-responsiveness further problematic features in STS management. Doxorubicin is a substrate for the multi- drug resistance (mdr) gene product p-glycoprotein drug efflux pump and exerts its main mode of action by induction of DNA double-strand breaks during the S-phase of the cell cycle. Two papers in my thesis characterise different aspects of chemoresistance in sarcoma. The first shows that wild-type p53 suppresses Protein Kinase Calpha (PKCα) phosphorylation (and activation) of p-glycoprotein by transcriptional repression of PKCα through a Sp-1 transcription factor binding site in its -244/-234 promoter region. The second paper demonstrates that Rad51 (a central mediator of homologous recombination repair of double strand breaks) has elevated levels in sarcoma and particularly in the S- G2 phase of the cell cycle. Suppression of Rad51 with small interfering RNA in sarcoma cell culture led to doxorubicin chemosensitisation. Reintroduction of wild-type p53 into STS cell lines resulted in decreased Rad51 protein and mRNA expression via transcriptional repression of the Rad51 promoter through increased AP-2 binding. In light of poor response rates to chemotherapy, escape from local control portends a poor prognosis for patients with sarcoma. Two papers in my thesis characterise aspects of sarcoma angiogenesis, invasion and metastasis. Human sarcoma samples were found to have high levels of matrix metalloproteinase-9 (MMP-9) with expression levels that correlated with p53 mutational status. MMP-9 is known to degrade extracellular collagen, contribute to the control of the angiogenic switch necessary in primary tumour progression and facilitate invasion and metastasis. Reconstitution of wild-type p53 function led to decreased levels of MMP-9 protein and mRNA as well as zymography-assessed MMP-9 proteolytic activity and decreased tumour cell invasiveness. Reintroduction of wild-type p53 into human sarcoma xenografts in-vivo decreased tumour growth and MMP-9 protein expression. Wild-type p53 was found to suppress mmp-9 transcription via decreased binding of NF-κB to its -607/-595 mmp-9 promoter element. Studies on the role of the VEGF165 in sarcoma found that sarcoma cells stably transfected with VEGF165 formed more aggressive xenografted tumours with increased vascularity, growth rate, metastasis, and resistance to chemotherapy. Use of the anti-VEGFR2 antibody DC101 enhanced doxorubicin sensitivity at sub-conventional dosing, inhibited tumour growth, decreased development of metastases, and reduced tumour micro-vessel density while increasing the vessel maturation index. These effects were explained primarily through effects on endothelial cells (e.c.s), rather than the tumour cells per se, where DC101 induced e.c. sensitivity to doxorubicin and suppressed e.c. production of MMPs. The p53 tumour suppressor pathway is the most frequently mutated pathway in sarcoma. Recapitulation of wild-type p53 function in sarcoma exerts a number of anti-cancer outcomes such as growth arrest, resensitisation to chemotherapy, suppression of invasion, and attenuation of angiogenesis. Using a modified nude rat-human sarcoma xenograft model for isolated limb perfusion (ILP) delivery of wild-type p53 in a replication deficient adenovirus vector I showed that functionally competent wild-type p53 could be delivered to and detected in human leiomyosarcoma xenografts confirming preclinical feasibility - although not efficacious due to low transgene expression. Viral fibre modification to express the RGD tripeptide motif led to greater viral uptake by sarcoma cells in vitro (transductional targeting) and changing the transgene promoter to a response element active in cells with active telomerase expression restricted the transgene expression to the tumour intracellular environment (transcriptional targeting). Delivery of the fibre-modified, selectively replication proficient oncolytic adenovirus Ad.hTC.GFP/ E1a.RGD by ILP demonstrated a more robust, and tumour-restricted, transgene expression with evidence of anti-sarcoma effect confirmed microscopically. Collaborative studies using the fibre modified phage RGD-4C AAVP confirmed that systemic delivery specifically, efficiently, and repeatedly targets human sarcoma xenografts, binds to αv integrins in tumours, and demonstrates a durable, though heterogeneous, transgene expression of 1-4 weeks. Incorporation of the Herpes Simplex Virus thymidine kinase (HSVtk) transgene into RGD-4C AAVP permitted CT-PET spatial and temporal molecular imaging in vivo of transgene expression and allowed quantification of tumour metabolic activity both before and after interval administration of a systemic cytotoxic with predictable and measurable response to treatment before becoming apparent clinically. These papers further the medical and scientific community’s understanding of the biology of soft tissue sarcoma and report preclinical studies with novel and promising anti- sarcoma therapeutics.
Resumo:
Dissertação de mestrado em Biologi apresentada à Faculdade de Ciências da Universidade do Porto, 2008
Resumo:
The function of a complex nervous system relies on an intricate interaction between neurons and glial cells. However, as glial cells are generally born distant from the place where they settle, molecular cues are important to direct their migration. Glial cell migration is important in both normal development and disease, thus current research in the laboratory has been focused on dissecting regulatory events underlying that crucial process. With this purpose, the Drosophila eye imaginal disc has been used as a model. In response to neuronal photoreceptor differentiation, glial cells migrate from the CNS into the eye disc where they act to correctly wrap axons. To ensure proper development, attractive and repulsive signals must coordinate glial cell migration. Importantly, one of these signals is Bnl, a Fibroblast Growth Factor (FGF) ligand expressed by retinal progenitor cells that was suggested to act as a non-autonomous negative regulator of excessive glial cell migration (overmigration) by binding and activating the Btl receptor expressed by glial cells. Through the experimental results described in chapter 3 we gained a detailed insight into the function of bnl in eye disc growth, photoreceptor development, and glia migration. Interestingly, we did not find a direct correlation between the defects on the ongoing photoreceptors and the glia overmigration phenotype; however, bnl knockdown caused apoptosis of eye progenitor cells what was strongly correlated with glia migration defects. Glia overmigration due to Bnl down-regulation in eye progenitor cells was rescued by inhibiting the pro-apoptotic genes or caspases activity, as well as, by depleting JNK or Dp53 function in retinal progenitor cells. Thus, we suggest a cross-talk between those developmental signals in the control of glia migration at a distance. Importantly, these results suggest that Bnl does not control glial migration in the eye disc exclusively through its ability to bind and activate its receptor Btl in glial cells. We also discuss possible biological roles for the glia overmigration in the bnl knockdown background. Previous results in the lab showed an interaction between dMyc, a master regulator of tissue growth, and Dpp, a Transforming Growth Factor-β important for retinal patterning and for accurate glia migration into the eye disc. Thus, we became interested in understanding putative relationships between Bnl and dMyc. In chapter 4, we show that they positively cooperate in order to ensure proper development of the eye disc. This work highlights the importance of the FGF signaling in eye disc development and reveals a signaling network where a range of extra- and intra-cellular signals cooperate to non-autonomously control glial cell migration. Therefore, such inter-relations could be important in other Drosophila cellular contexts, as well as in vertebrate tissue development.
Resumo:
Ink Disease is considered one of the most important causes of the decline of chestnut orchards. The break in yield of Castanea sativa Mill is caused by two species: Phytophthora cinnamomi and Phytophthora cambivora, being the first one the foremost pathogen of ink disease in Portugal. P. cinnamomi is one of the most aggressive and widespread plant pathogen with nearly 1,000 host species. This oomycete causes enormous economic losses and it is responsible for the decline of many plant species in Europe and worldwide. Up to now no efficient treatments are available to fight these pathogens. Because of the importance of chestnut at economical and ecological levels, especially in Portugal, it becomes essential to explore the molecular mechanisms that determine the interaction between Phytophthora species and host plants through the study of proteins GIP (glucanase inhibitor protein) and NPP1 (necrosis-inducing Phytophthora protein 1) produced by P. cinnamomi during the infection. The technique of RNA interference was used to knockdown the gip gene of P. cinnamomi. Transformants obtained with the silenced gene have been used to infect C. sativa, in order to determine the effect of gene silencing on the plant phenotype. To know more about the function of GIP and NPP1 involved in the mechanism of infection, the ORF’s of gip and npp1 genes have been cloned to the pTOR-eGFP vector for a future observation of P. cinnamomi transformants with fluorescent microscopy and determination of the subcellular localization. Moreover the prediction by bioinformatics tools indicates that both GIP and NPP1 proteins are secreted. The results allow to predict the secretory destination of both GIP and NPP1 proteins and confirm RNAi as a potential alternative biological tool in the control and management of P. cinnamomi. Keywords:
Resumo:
Visceral leishmaniasis (VL) has a wide geographical distribution in tropical and subtropical areas of the planet, which is a protozoan parasite of the genus Leishmania. This pathogen is transmitted to the host through the sandflies bite, with its saliva, the immune response that leads to both. In the state of Rio Grande do Norte, 85% of the sand flies captured is Lutzomyia longipalpis, but the second most abundant, Lutzomyia evandroi, it deserves emphasis because its wide distribution and eclectic behavior. The exposure of people living in endemic areas for the insect vector VL greatly increases the chances of infection. This study aimed to evaluate aspects of the epidemiological profile of VL in endemic areas of human and nonendemic in the metropolitan area of Natal, as well as verify the abundance and seasonal fluctuations of sandflies species in two counties endemic for VL. Were collected in the municipalities of Nísia Floresta, Parnamirim, São Gonçalo do Amarante and Macaíba, of which groups of females were separated for further dissection of the salivary glands and identification of species. The blood samples used were from individuals of two Natal s districts where it has never been reported cases of VL and neighborhoods of Parnamirim applicants who present cases of VL. In the municipality of Nísia Floresta, the most abundant species was L. evandroi with 38.39%, followed by L. longipalpis with 36.22%, L. walkeri 19.67% L. lenti 3.81%, L. wellcomei 1.39% and L. whitmani 0.52%. Already in Parnamirim the proportions were L. walkeri with 73.15%, L. evandroi with 10.55%, L. wellcomei 7.63%, L. longipalpis 6.37%, L. whitmani 1.46%, L. sordellii 0.52%, L. intermedia 0.21 and L. shanonni 0.1%. In both municipalities was observed higher abundance of species distributed in the initial months of the year, as February and March. The study showed that no difference in exposure to the vector of VL among individuals from endemic and non endemic area for this disease. But there are differences in exposure between individuals of L. longipalpis and L. evandroi, confirming the great powers of the first vector. It was also characterized as predominant phenotype in the population of endemic areas who had negative serologic responses to antigens of Leishmania and result in negative Montenegro skin test (DTH), indicating that much of the population hasn t been bitten by infected insects