973 resultados para BEEF
Resumo:
According to the producers, CHROMagar (TM) Listeria medium comes to facilitate the detection, differentiating Listeria monocytogenes from the other species, directly on the isolation process, allowing final results in 72 h, while the traditional method takes up to 10 days. A total of 120 food samples of sliced cooked ham, ground beef and frankfurters was analyzed. From 151 colonies presenting typical L. monocytogenes characteristics on CHROMagar (TM) Listeria (bluish, surrounded by a white halo), only 95 (62.9%) were confirmed as L. monocytogenes. The medium was highly sensitive to detect L. monocytogenes in ground beef and frankfurter, but not in sliced ham. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The aim of the present study was to evaluate the genetic correlations among real-time ultrasound carcass, BW, and scrotal circumference (SC) traits in Nelore cattle. Carcass traits, measured by real-time ultrasound of the live animal, were recorded from 2002 to 2004 on 10 farms across 6 Brazilian states on 2,590 males and females ranging in age from 450 to 599 d. Ultrasound records of LM area (LMA) and backfat thickness (BF) were obtained from cross-sectional images between the 12th and 13th ribs, and rump fat thickness (RF) was measured between the hook and pin bones over the junction between gluteus medius and biceps femoris muscles. Also, BW (n = 22,778) and SC ( n = 5,695) were recorded on animals born between 1998 and 2003. The BW traits were 120, 210, 365, 450, and 550-d standardized BW (W120, W210, W365, W450, and W550), plus BW (WS) and hip height (HH) on the ultrasound scanning date. The SC traits were 365-, 450-, and 550-d standardized SC (SC365, SC450, and SC550). For the BW and SC traits, the database used was from the Nelore Breeding Program-Nelore Brazil. The genetic parameters were estimated with multivariate animal models and REML. Estimated genetic correlations between LMA and other traits were 0.06 (BF), -0.04 ( RF), 0.05 (HH), 0.58 (WS), 0.53 (W120), 0.62 (W210), 0.67 (W365), 0.64 ( W450 and W550), 0.28 (SC365), 0.24 (SC450), and 0.00 ( SC550). Estimated genetic correlations between BF and with other traits were 0.74 ( RF), -0.32 (HH), 0.19 (WS), -0.03 (W120), -0.10 (W210), 0.04 (W365), 0.01 (W450), 0.06 ( W550), 0.17 (SC365 and SC450), and -0.19 (SC550). Estimated genetic correlations between RF and other traits were -0.41 (HH), -0.09 (WS), -0.13 ( W120), -0.09 ( W210), -0.01 ( W365), 0.02 (W450), 0.03 (W550), 0.05 ( SC365), 0.11 ( SC450), and -0.18 (SC550). These estimates indicate that selection for carcass traits measured by real-time ultrasound should not cause antagonism in the genetic improvement of SC and BW traits. Also, selection to increase HH might decrease subcutaneous fat as correlated response. Therefore, to obtain animals suited to specific tropical production systems, carcass, BW, and SC traits should be considered in selection programs.
Resumo:
P>Age at first calving (AFC) measures the entry of heifers into the beef cattle production system. This trait can be used as a selection criterion for earlier reproductive performance. Using data from Nelore cattle participating in the `Program for Genetic Improvement of the Nelore Breed` (PMGRN-Nelore Brazil), bi-trait analyses were performed using the restricted maximum likelihood method, based on an AFC animal model and the following traits: female body weight adjusted to 365 (BW365) and 450 (BW450) days of age, and male scrotal circumference adjusted to 365 (SC365), 450 (SC450), 550 (SC550) and 730 (SC730) days of age. The heritability estimates for AFC ranged from 0.02 +/- 0.02 to 0.04 +/- 0.02. The estimates of additive direct heritabilities (with standard error) for BW365, BW450, SC365, SC450, SC550 and SC730 were 0.36 +/- 0.07, 0.38 +/- 0.07, 0.48 +/- 0.07, 0.65 +/- 0.07, 0.64 +/- 0.07 and 0.42 +/- 0.07, respectively, and the genetic correlations with AFC were -0.38, -0.33, 0.10, -0.13, -0.13 and 0.06, respectively. In the herds studied, selection for SC365, SC450, SC550 or SC730 should not cause genetic changes in AFC. Selection based on BW365 or BW450 would favor smaller AFC breeding values. However, the low magnitude of direct heritability estimates for AFC in these farms indicates that changes in phenotypical expression depend mostly on non-genetic factors.
Resumo:
To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
Resumo:
The aim of the present study was to evaluate the genetic and environmental factors affecting records of longissimus muscle area (LMA) and back fat thickness (BF) obtained between the 12th and 13th ribs, and rump fat thickness (RF) between the hook and pin bones, measured by real-time ultrasound in Nelore cattle. Also, weight records of 22,778 animals born from 1998 to 2003, in ten farms across six Brazilian states were used. Carcass traits as measured by ultrasound of the live animal were recorded from 2002 to 2004 in 2590 males and females with ages varying from 450 to 599 days. Fixed models including farm, year and season of birth, sex and type of feed effects, and the covariates age of dam (AOD) and age of animal at measurement were used to study the effect of environmental factors on these traits. The genetic parameters for LMA, BF and RF were estimated with two and three-trait animal models with 120-day weights using a restricted maximum likelihood method. All environmental effects significantly affected carcass traits, with the exception of year of birth for BF and RF and AOD for LMA. The heritability estimates for LMA, BF and RF were 0.35, 0.51 and 0.39, respectively. Standard errors obtained in one-trait analyses were from 0.07 to 0.09. Genetic correlation estimates between LMA and the two traits of subcutaneous fat were low (close to zero) and 0.74 between BF and RF, indicating that the selection for LMA should not cause antagonism in the genetic improvement of subcutaneous fat measured by real-time ultrasound. (C) 2007 Elsevier B.V. All fights reserved.
Resumo:
Prevalence of anti-Neospora caninum antibodies was measured in serum samples randomly collected from dairy (40 cows from four farms) and beef cattle (120 animals from 12 farms) from the municipality of Santarem, Para State, Brazil, calculated by using the Win Episcope 2.0 statistical program. The presence of anti-N. caninum antibodies was determined by indirect immunofluorescence-antibody test with a cut-off value of 1: 100. We found that 13 farms (81.25%) showed infection rates above 10%, which indicates widespread distribution of M caninum in the region. The frequency per animal was 19%. No difference was observed between the prevalence values in dairy and beef animals or between farms, which was probably due to the small number of dairy farms examined. The results confirm, for the first time, the presence of anti-N. caninum antibodies in cattle from Para State and the necessity to further investigate the epidemiology of M caninum in the Amazon region. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The study evaluated, in early post-partum anoestrous Nelore cows, if the increase in plasma oestradiol (E2) concentrations in the pre-ovulatory period and/or progesterone priming (P4 priming) preceding ovulation, induced by hormonal treatment, reduces the endogenous release of prostaglandin PGF(2)alpha and prevents premature lysis of the corpus luteum (CL). Nelore cows were subjected to temporary calf removal for 48 h and divided into two groups: GPE/eCG group (n = 10) and GPG/eCG group (n = 10). Animals of the GPE/eCG group were treated with a GnRH agonist. Seven days later, they received 400 ID of eCG, immediately after PGF(2)alpha treatment, and on day 0, 1.0 mg of oestradiol benzoate (EB). Cows of the GPG/eCG group were similarly treated as those of the GPE/eCG group, except that EB was replaced with a second dose of GnRH. All animals were challenged with oxytocin (OT) 9, 12, 15 and 18 days after EB or GnRH administration and blood samples were collected before and 30 min after OT. Irrespective of the treatments, a decline in P4 concentration on day 18 was observed for cows without P4 priming. However, animals exposed to P4 priming, treated with EB maintained high P4 concentrations (8.8 +/- 1.2 ng/ml), whereas there was a decline in P4 on day 18 (2.1 +/- 1.0 ng/ml) for cows that received GnRH to induce ovulation (p < 0.01). Production of 13,14-dihydro-15-keto prostaglandin F(2)alpha (PGFM) in response to OT increased between days 9 and 18 (p < 0.01), and this increase tended to be more evident in animals not exposed to P4 priming (p < 0.06). In conclusion, the increase in E2 during the pre-ovulatory period was not effective in inhibiting PGFM release, which was lower in P4-primed than in non-primed animals. Treatment with EB promoted the maintenance of elevated P4 concentrations 18 days after ovulation in P4-primed animals, indicating a possible beneficial effect of hormone protocols containing EB in animals with P4 priming.
Resumo:
Two experiments were conducted to investigate the effects of equine chorionic gonadotropin (eCG) at progestin removal and gonadotropin-releasing hormone (GnRH) at timed artificial insemination (TA!) on ovarian follicular dynamics (Experiment 1) and pregnancy rates (Experiment 2) in suckled Nelore (Bos indicus) cows. Both experiments were 2 x 2 factorials (eCG or No eCG, and GnRH or No GnRH), with identical treatments. In Experiment 1, 50 anestrous cows, 134.5 +/- 2.3 d postpartum, received a 3 mg norgestomet ear implant se, plus 3 mg norgestomet and 5 mg estradiol valerate im on Day 0. The implant was removed on Day 9, with TAI 54 h later. Cows received 400 IU eCG or no further treatment on Day 9 and GnRH (100 mu g gonadorelin) or no further treatment at TAI. Treatment with eCG increased the growth rate of the largest follicle from Days 9 to 11 (means +/- SEM, 1.53 +/- 0.1 vs. 0.48 +/- 0.1 mm/d; P < 0.0001), its diameter on Day 11(11.4 +/- 0.6 vs. 9.3 +/- 0.7 mm; P = 0.03), as well as ovulation rate (80.8% vs. 50.0%, P = 0.02), whereas GnRH improved the synchrony of ovulation (72.0 +/- 1.1 VS. 71.1 +/- 2.0 h). In Experiment 2 (n = 599 cows, 40 to 120 d postpartum), pregnancy rates differed (P = 0.004) among groups (27.6%, 40.1%, 47.7%, and 55.7% for Control. GnRH, eCG, and eCG + GnRH groups). Both eCG and GnRH improved pregnancy rates (51.7% vs. 318%, P = 0.002; and 48.0% vs 37.6%, P = 0.02, respectively), although their effects were not additive (no significant interaction). In conclusion, eCG at norgestomet implant removal increased the growth rate of the largest follicle (LF) from implant removal to TAI, the diameter of the LF at TAI, and rates of ovulation and pregnancy rates. Furthermore, GnRH at TAI improved the synchrony of ovulations and pregnancy rates in postpartum Nelore cows treated with a norgestomet-based TAI protocol. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Two experiments evaluated the effects of the first GnRH injection of the 5-d timed artificial insemination (AI) program on ovarian responses and pregnancy per AT (P/AI), and the effect of timing of the final GnRH to induce ovulation relative to AT on P/AI. In experiment 1, 605 Holstein heifers were synchronized for their second insemination and assigned randomly to receive GnRH on study d 0 (n = 298) or to remain as untreated controls (n = 307). Ovaries were scanned on study d 0 and 5. All heifers received a controlled internal drug-release (CIDR) insert containing progesterone on d 0, a single injection of PGF(2 alpha),, and removal of the CIDR on d 5, and GnRH concurrent with timed AT on d 8. Blood was analyzed for progesterone at AI. Pregnancy was diagnosed on d 32 and 60 after AI. Ovulation on study d 0 was greater for GnRH than control (35.4 vs. 10.6%). Presence of a new corpus luteum (CL) at PGF(2 alpha),, injection was greater for GnRH than for control (43.1 vs. 20.8%), although the proportion of heifers with a CL at PGF(2 alpha) did not differ between treatments and averaged 87.1%. Progesterone on the day of AT was greater for GaRH than control (0.50 +/- 0.07 vs. 0.28 +/- 0.07 ng/mL). The proportion of heifers at AI with progesterone <0.5 ng/mL was less for GURH than for control (73.8 vs. 88.2%). The proportion of heifers in estrus at AI did not differ between treatments and averaged 66.8%. Pregnancy per AI was not affected by treatment at d 32 or 60 (GnRH = 52.5 and 49.8% vs. control = 54.1 and 50.0%), and pregnancy loss averaged 6.0%. Responses to GnRH were not influenced by ovarian status on study d 0. In experiment 2, 1,295 heifers were synchronized for their first insemination and assigned randomly to receive a CIDR on d 0, PGF(2 alpha) and removal of the CIDR on d 5, and either GnRH 56 h after PGF(2 alpha) and AI 16 h later (OVS56, n = 644) or GnRH concurrent with AI 72 h after PGF(2 alpha) (COS72; n = 651). Estrus at AI was greater for COS72 than for OVS56 (61.4 vs. 47.5). Treatment did not affect P/AI on d 32 in heifers displaying signs of estrus at AI, but COS72 improved P/AI compared with OVS56 (55.0 vs. 47.6%) in those not in estrus at AI. Similarly, P/AI on d 60 did not differ between treatments for heifers displaying estrus, but COS72 improved P/AI compared with OVS56 (53.0 vs. 44.7%) in those not in estrus at AI. Administration of GnRH on the first day of the 5-d timed AI program resulted in low ovulation rate and no improvement in P/AI when heifers received a single PGF(2 alpha) injection 5 d later. Moreover, extending the proestrus by delaying the finAI GnRH from 56 to 72 h concurrent with AI benefited fertility of dairy heifers that did not display signs of estrus at insemination following the 5-d timed AI protocol.
Resumo:
The objectives were to evaluate the effects of equine chorionic gonadotropin (eCG) supplementation (with or without eCG) and type of ovulatory stimulus (GnRH or ECP) on ovarian follicular dynamics, luteal function, and pregnancies per AI (P/AI) in Holstein cows receiving timed artificial insemination (TAI). On Day 0, 742 cows in a total of 782 breedings, received 2 mg of estradiol benzoate (EB) and one intravaginal progesterone (P4) insert (CIDR). On Day 8, the CIDR was removed, and all cows were given PGF2 alpha and assigned to one of four treatments in a 2 x 2 factorial arrangement: (1) CG: GnRH 48 h later; (2) CE: ECP; (3) EG: eCG + GnRH 48 It later; (4) EE: eCG + ECP. There were significant interactions for eCG x ovulatory stimulus and eCG x BCS. Cows in the CG group were less likely (28.9% vs. 33.8%; P < 0.05) to become pregnant compared with those in the EG group (odds ratio [OR] = 0.28). There were no differences in P/AI between CE and EE cows (30.9% vs. 29.1%; OR = 0.85; P = 0.56), respectively. Thinner cows not receiving eCG had lower P/AI than thinner cows receiving eCG (15.2% vs. 38.0%; OR = 0.20; P < 0.01). Treatment with eCG tended to increase serum progestesterone concentrations during the diestrus following synchronized ovulation (P < 0.10). However, the treatment used to induce ovulation did not affect CL volume or serum progesterone concentrations. In conclusion, both ECP and GnRH yielded comparable P/AI. However, eCG treatment at CIDR removal increased pregnancy rate in cows induced to ovulate with GnRH and in cows with lower BCS. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Maternal recognition of pregnancy in the cow requires successful signaling by the conceptus to block luteolysis. Conceptus Growth and function depend on an optimal uterine environment, regulated by luteal progesterone. The objective of this study was to test strategies to optimize luteal function, as well as prevent a dominant follicle from initiating luteolysis. Nelore (Bos taurus indicus) beef cows (n = 40) were submitted to a GnRH/PGF(2 alpha)/GnRH protocol. Cows that ovulated from a dominant ovarian follicle (ovulation = Day 0) were allocated to receive: no additional treatment (Gc; n = 7); 3000 IU of hCG on Day 5 (G(hCG); n = 5); 5 mg of estradiol-17 beta on Day 12 (G(E2); n = 6); or 3000 IU of hCG on Day 5 and 5 mg of estradiol-17 beta on Day 12 (G(hCG/E2); n = 5). Ultrasonographic imaging of the ovaries, assessment of plasma progesterone concentration, and detection of estrus were done daily from Day 5 to the day of subsequent ovulation. Treatment with hCG induced an accessory CL, increased CL volume, and plasma progesterone concentration throughout the luteal phase (P < 0.01). Estradiol-17 beta induced atresia and recruitment of a new wave of follicular growth; it eliminated a potentially estrogen-active, growing ovarian follicle within the critical period for maternal recognition of pregnancy, but it also hastened luteolysis (Days 16 or 17 vs. Days 18 or 19 in non-treated cows). In conclusion, the approaches tested enhanced luteal function (hCG) and altered ovarian follicular dynamics (estradiol-17 beta), but were unable to extend the life-span of the CL in Nelore cows. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The objective was to compare pharmacological strategies aiming to inhibit prostaglandin F2 alpha (PGF(2 alpha)) synthesis (flunixin meglumine; FM), stimulate growth of the conceptus (recombinant bovine somatotropin; bST) and progesterone (P(4)) synthesis (human chorionic gonadotropin; hCG), as well as their combinations, regarding their ability to improve pregnancy rates in beef cattle. Lactating Nelore cows (N = 975), 35 to 70 days postpartum, were synchronized and inseminated by timed artificial insemination (TAT) on Day 0. On Day 7, cattle were allocated into eight groups and received one of the following treatments: saline (S) on Days 7 and 16 (Group Control); S on Day 7 and FM on Day 16 (Group FM); bST on Day 7 and S on Day 16 (Group bST); bST on Day 7 and FM on Day 16 (Group bST + FM); hCG on Day 7 and S on Day 16 (Group hCG); hCG on Day 7 and FM on Day 16 (Group hCG + FM); bST and hCG on Day 7 and S on Day 16 (Group bST + hCG), or bST and hCG on Day 7 and FM on Day 16 (Group bST + hCG + FM). The aforementioned treatments were administered at the following doses: 2.2 mg/kg FM (Banamine (R); Intervet Schering-Plough, Cotia, SP, Brazil), 500 mg bST (Boostin (R); Intervet Schering-Plough), and 2500 IU hCG (Chorulon (R); Intervet Schering-Plough). Pregnancy diagnosis was performed 40 days after TAI by transrectal ultrasonography. Pregnancy rates were not significantly different among treatments. However, there was a main effect of hCG treatment to increase pregnancy rates (63.0 vs. 55.4%; P = 0.001). Concentrations of P(4) did not differ significantly among groups on Day 7 or on Day 16. However, consistent with the higher pregnancy rates, hCG increased P(4) concentrations on Day 16 (10.6 vs. 9.6 ng/mL, respectively; P = 0.05). We concluded that hCG treatment 7 days after TAI improved pregnancy rates of lactating Nelore cows, possibly via a mechanism leading to induction of higher P(4) concentrations, or by reducing the luteolytic stimulus during maternal recognition of pregnancy. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Ethanol stimulates the production of prostaglandins in many species. The purpose of this study was to verify the effect of ethanol on the production of prostaglandin F2 alpha (PGF2 alpha) and luteolysis in bovine females. In the first experiment, Holstein cows at day 17 of the oestrous cycle were treated with 100% ethanol (0.05 ml/kg of body weight, IV; n = 5), saline (0.05 ml/kg of body weight, IV; n = 4) or synthetic prostaglandin (150 mu g of D-cloprostenol/cow, IM; n = 4). The plasma concentrations of 13, 14-dihydro-15-keto PGF2 alpha (PGFM; the main metabolite of PGF2 alpha measured in the peripheral blood) were assessed by radioimmunoassay (RIA). There was an acute release of PGFM in response to ethanol comparing to other treatments (p <= 0.05). However, only cows treated with PGF2 alpha underwent luteolysis. In the second experiment, endometrial explants of cross-bred beef cows (n = 4) slaughtered at day 17 of the oestrous cycle were cultured for 4 h. During the last 3 h, the explants were cultured with medium supplemented with 0, 0.1, I, 10 or 100 mu l of 100% ethanol/ml. Medium samples were collected at hours 1 and 4 and concentrations of PGF2 alpha were measured by RIA. Ethanol did not induce PGF2 alpha production by the endometrium. In conclusion, ethanol does not cause luteolysis in cows because it stimulates production of PGF2 alpha in extra-endometrial tissues.
Resumo:
Considering, that there is limited information about the preovulatory LH surge in Zebu Cattle (Bos indicus). the purpose of the present work was to assess the LH surge in Nelore cows during the estrous cycle and after ovarian superestimulation of ovarian follicular development with FSH. This information is particularly important to improve superovulatory protocols associated with fixed-time artificial insemination. Nelore cows (n = 12) had their estrus synchronized with all intravaginal device containing progesterone (CIDR-B (R)) associated with estradiol benzoate administration (EB, 2.5 mg, i.m., Day 0). Eight days later all animals were treated with PGF2 alpha (Day 8) in the morning (8:00 h) and at night, when CIDR devices were removed (20:00 11). Starting 38 h after the first PGF2 alpha injection, blood sampling and ovarian ultrasonography took place every 4 h, during 37 consecutive hours. Frequent handling may have resulted in a stress-induced suppression of LH secretion resulting in only 3 of 12 cows having ovulations at 46.7 +/- 4.9 and 72.3 +/- 3.8 h, respectively, after removal of CIDR-B. Thirty days later, the same animals received the described hormonal treatment associated with FSH (Folltropin (R) total dose = 200 mg) administered twice a day, during 4 consecutive days, starting on Day 5. Thirty-six hours after the first injection of PGF2 alpha, to minimize stress. only seven blood samples were collected at 4 h interval each. and ultrasonography was performed every 12 h until ovulation. In 11 of 12 cows (92%) the LH surge and ovulation were observed 34.6 +/- 1.6 and 59.5 +/- 1.9 h. respectively. after removal of progesterone source. The maximum values for LH in those animals were 19.0 +/- 2.6 ng/ml (mean +/- S.E.M.). It is concluded that, in Nelore COWS submitted to a ovarian superstimulation Protocol, the LH surge occurs approximately 35 It after removal of intravaginal device containing progesterone, and approximately 12h before the LH surge observed after an induced estrus without ovarian superstimulation (C) 2008 Elsevier B.V. All rights reserved.