986 resultados para Absorption coefficients
Resumo:
A novel butt-joint coupling scheme is proposed to improve the coupling efficiency for the integration of a GalnAsP MQW distributed feedback (DFB) laser with an MQW electro-absorption modulator (EAM). The proposed method gives more than 90% coupling efficiency, being much higher than the 26% coupling efficiency of the common MQW-MQW coupling technique. The differential quantum efficiency of the MQW-bulk-MQW coupled device is also much higher than that of the MQW-MQW device, 0.106 mW/mA versus 0.02 mW/mA. The EAM-DFB devices fabricated by the proposed method exhibit a very high modulation efficiency (12 dB/V) from 0 to I V. By adopting a high-mesa ridge waveguide and buried polyimide, the capacitance of the modulator is reduced to about 0.28 pF. The experimental results demonstrate that the method can replace the conventional MQW-MQW coupling technique to fabricate high-quality integrated photonic devices. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We have studied the temperature dependence of absorption edge of GaN thin films grown on sapphire substrate by metal-organic chemical vapor deposition using optical absorption spectroscopy. A shift in absorption edge of about 55 meV has been observed in temperature range 273-343 K. We have proposed a theoretical model to find the energy gap from absorption coefficient using alpha = alpha(max) + (alpha(min) - alpha(max))/[1 + exp 2(E - E-g + KT)/KT]. Temperature dependence of band gap has also been studied by finding an appropriate theoretical fit to our data using E-g(T) = E-g(273 K) - (8.8 x 10(-4)T(2))/(483 + T) + 0.088 (Varshni empirical formula) and E-g(T) = E-g(273 K)-0.231447/[exp(362/T)-1] + 0.082 relations. It has been found that data can be fitted accurately after adding a factor similar to 0.08 in above equations. Debye temperature (483 K) and Einstein temperature (362 K) in the respective equations are found mutually in good agreement.
Resumo:
We have investigated the intersubband absorption for spatially ordered and non-ordered quantum dots (QDs). It is found that the intersubband absorption of spatially ordered QDs is much stronger than that of non-ordered QDs. The enhanced absorption is attributed to the improved size uniformity concurrent with the spatial ordering for the growth condition employed. For the FTIR measurement under normal incidence geometry, using a undoped sample as reference can remove the interference effect due to multiple reflections. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Semiconductor saturable absorber mirrors (SESAMs) with GaAs/air interface relaxation region have less nonsaturable loss than those with low temperature grown In0.25Ga0.75As relaxation region. A thin layer Of SiO2 and a high reflectivity film Of Si/(SiO2/Si)(4) were coated on the SESAMs, respectively in order to improve the SESAM's threshold for damage. The passively continuous wave mode-locked lasers with two such SESAMs were demonstrated, and the SESAM with high reflectivity film of Si/(SiO2/Si)(4) is proved to be helpful for high output power. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Ten-period 5.5 nm Si0.75Ge0.25/10.3 nm Si/2.5 nm Si0.5Ge0.5 trilayer asymmetric superlattice was prepared on Si (001) substrate by ultrahigh vacuum chemical vapor deposition at 500 degrees C. The stability of Mach-Zehnder interferometer was improved by utilizing polarization-maintaining fibers. According to the electro-optic responses of the superlattice with the light polarization along [110] and [-110], respectively, both electro-optic coefficients gamma(13) and gamma(63) of such asymmetric superlattice were measured. gamma(13) and gamma(63) are 2.4x10(-11) and 1.3x10(-11) cm/V, respectively, with the incident light wavelength at 1.55 mu m. (c) 2006 American Institute of Physics.
Resumo:
Guest host polymer thin films of polymethyl methacrylate (PMMA) incorporated with (4'-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were fabricated by spin coating and then poled by the method of corona-onset poling at elevated temperature. The absorption mechanism of the polymeric film, which is very important for the optical transmission losses and directly relates to the orientation of chromophore NAEC in polymer PMMA, was investigated in detail. From the UV-visible absorption spectra for NAEC/PMMA film before and after being poled, we determined the change of absorption coefficient kappa with the wavelength and approximately calculated the maximum absorption A(parallel tomax) as 3.46 for incident light propagating parallel through the film, i.e. the ordinary polarized light, which cannot be directly measured in the spectro photometer. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The plasmon resonance absorption of the Ag/SiO2 nanocomposite film is investigated. The measured absorption spectra are compared with those calculated by the Mie theory. The results indicate that the Mie theory on the basis of classical electrodynamics can only partially explain the optical absorption spectra of the Ag/SiO2 nanocomposite film. We believe that the plasmon resonance absorption is mainly an intrinsic quality of the metal particle, and can be explained only with the electronic structure of the metal particle. In the latter, surface resonance state is introduced to systematically discuss the optical absorption spectra of the Ag/SiO2 nanocomposite film. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The photoluminescence from ZnS1-xTex alloy with 0 < x < 0.3 was investigated under hydrostatic pressure up to 7 GPa. Two peaks were observed in the alloys with x < 0.01, which are related to excitons bound to isolated Te isoelectronic impurities (Te-1 centers) and Te pairs (Te-2 centers), respectively. Only the Te-2 related emissions were observed in the alloys with 0.01 < x < 0.03. The emissions in the alloys with 0.03 < x < 0.3 are attributed to the excitons bound to the Te-n (n greater than or equal to 3) cluster centers. The pressure coefficient of the Te-1 related peak is 89(4) meV/GPa, about 40% larger than that of the band gap of ZnS. On the other hand, the pressure coefficient of the Te-2 related emissions is only 52(4) meV/GPa, about 15% smaller than that of the ZnS band gap. A simple Koster-Slater model has been used to explain the different pressure behavior of the Te-1 and Te-2 centers. The pressure coefficient of the Te-3 centers is 62(2) meV/GPa. Then the pressure coefficients of the Te-n centers decrease rapidly with further increasing Te composition.
Resumo:
Excitation-power dependence of hydrostatic pressure coefficients (dE/dP) of InxGa1-xN/InyGa1-yN multiple quantum wells is reported. When the excitation power increases from 1.0 to 33 mW, dE/dP increases from 26.9 to 33.8 meV/GPa, which is an increase by 25%. A saturation behavior of dE/dP with the excitation power is observed. The increment of dE/dP with increasing carrier density is explained by an reduction of the internal piezoelectric field due to an efficient screening effect of the free carriers on the field.
Resumo:
Novel guest nonlinear optical (NLO) chromophore molecules (4-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were doped in poly (methyl methacrylate) (PMMA) host with a concentration of approximately 15% by weight. For a useful macroscopic electro-optic (EO) effect, these NLO molecules NAEC were arranged in a noncentrosymmetric structure in the host polymer by corona-onset poling at elevated temperature (COPET). For applying NAEC-PMMA polymer in optical devices such as EO switch, its optical properties have been investigated. The UV/Visible absorption spectra for the unpoled and poled polymer film were determined. The refractive index of the film was also determined from measurements of the coupling angles with the reflective intensity at 632.8 nm wavelength. Using the simple reflection technique, the EO coefficient 33 value was measured as 60 pm/V at 632.8 nm wavelength. The second-order nonlinear coefficient d(33) was characterized by the second-harmonic-generation (SHG) experimental setup and the calculated d(33) value reached 18.4 pm/V at 1064 nm wavelength. The relation between the second-order nonlinear coefficients d(33) and d(13) for the poled polymer film was also discussed in detail and the ratio d(33)/d(13) value was obtained as 3.3. (C) 2002 Kluwer Academic Publishers.
Resumo:
ZnS:Te epilayers with Te concentration from 0.5% to 3.1% were studied by photoluminescence under hydrostatic pressure at 15 K. Two emission bands related to the isolated Te-1 and Te-2 pair isoelectronic centers were observed in the samples with Te concentrations of 0.5% and 0.65%. For the samples with Te concentrations of 1.4% and 3.1%, only the Te-2-related peak was observed. The pressure coefficients of all the Te-1-related bands were found to be unexpectedly much larger than that of the ZnS band gap. The pressure coefficients for all the Te-2-related bands are, however, rather smaller than that of ZnS band gap as usually observed. Analysis based on a Koster-Slater model indicates that an increase of the valence bandwidth with pressure is the main reason for the faster pressure shift of the Te-1 centers, and the huge difference in the pressure behavior of the Te-1 and Te-2 centers is due mainly to the difference in the pressure-induced enhancement of the impurity potential on the Te-1 and Te-2 centers. (C) 2002 American Institute of Physics.
Resumo:
ZnS1-xTex (0.02less than or equal toxless than or equal to0.3) alloys are studied by photoluminescence under hydrostatic pressure at room temperature. Only a wide emission band is observed for each sample. Its peak energy is much lower than the corresponding band gap of alloys. These bands are ascribed to the radiative annihilation of excitons bound at Te-n(ngreater than or equal to2) isoelectronic centers. The pressure coefficients of the emission bands are smaller than those of alloy band gaps from 48% to 7%. The difference of the pressure coefficient of the emission band and the band gap increases when the binding energy of Te-n centers decreases. It seems contrary to our expectation and needs further analysis. The integrated intensities of emission bands decrease with increasing pressure due to the decreasing of the absorption coefficient associated with the Te-n centers under pressure. According to this model the Stokes shifts between the emission and absorption bands of the Te-n centers are calculated, which decrease with the increasing Te composition in alloys.
Resumo:
Nanocomposite films consisting of nanosized Ag particles embedded in partially oxidized amorphous Si-containing matrices were prepared by radio frequency magnetron co-sputtering deposition. We studied the influence of ambient atmosphere during the preparation and heat-treatment of Ag/SiOx (0 less than or equal to x less than or equal to 2) nanocompositefilm on its optical absorption properties. We found that the plasmon resonance absorption peak shifts to shorter wavelengths with the increasing oxygen content in the SiOx matrix. The analysis indicates that the potential barrier between Ag nanoparticles and SiOx matrix increases with the increasing x value, which will induce the surface resonance state to shift to higher energy. The electrons in the vicinity of the Fermi level of Ag nanoparticles must absorb more energy to be transferred to the surface resonance state with the increasing x value. It was also found that the plasmon resonance absorption peaks of the samples annealed in different ambient atmospheres are located at about the same position. This is because the oxidation surface layer is dense enough to prevent the oxygen from penetrating into the sample to oxidize the silicon in the inner layer.
Resumo:
The self-organization growth of In0.32Ga0.68As/GaAs quantum dots (QDs) superlattices is investigated by molecular beam epitaxy. It is found that high growth temperature and low growth rate are favorable for the formation of perfect vertically aligned QDs superlattices. The aspect ratio (height versus diameter) of QD increases from 0.16 to 0.23 with increase number of bi-layer. We propose that this shape change play a significant role to improve the uniformity of QDs superlattices. Features in the variable temperature photoluminescence characteristics indicate the high uniformity of the QDs. Strong infrared absorption in the 8-12 mum was observed. Our results suggest the promising applications of QDs in normal sensitive infrared photodetectors. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper we present a new method for measuring diffusion coefficients in liquid metals under convection-less conditions with solid/liquid-liquid/solid trilayer. The advantage of this kind of trilayer is that effects from gravity-induced convection and Marangoni-convection can be omitted, so that the diffusion coefficient is determined more accurately. The Ta/Zn-Sn/Si trilayer were prepared with a multi-target ion-beam sputtering deposition technique and annealed in an electric furnace under an argon atmosphere. The interdiffusion of liquid zinc and tin at 500 degrees degree C was investigated. The diffusion concentration profiles were determined by energy dispersive spectroscopy. The interdiffusion coefficients range from 1.0x10(-6)cm(2)/s to 2.8x10(-6)cm(2)/s, which is less than previous values measured by capillary reservoir technique under 1g-environment where various convection exist. The precise interdiffusion coefficients of liquid zinc and tin result from the removing of disturbances of various kinds of convection.