1000 resultados para resonant states
Resumo:
We describe methods for the fast production of highly coherent-spin-squeezed many-body states in bosonic Josephson junctions. We start from the known mapping of the two-site Bose-Hubbard (BH) Hamiltonian to that of a single effective particle evolving according to a Schrödinger-like equation in Fock space. Since, for repulsive interactions, the effective potential in Fock space is nearly parabolic, we extend recently derived protocols for shortcuts to adiabatic evolution in harmonic potentials to the many-body BH Hamiltonian. A comparison with current experiments shows that our methods allow for an important reduction in the preparation times of highly squeezed spin states.
Resumo:
The aim of this study is to describe the structure of the pharmacy industry in four post-Soviet states on the Baltic Sea: Russia, Estonia, Latvia, and Lithuania. In addition to this, the opportunities that these markets have to offer for international pharmaceutical companies are explored. After the Soviet Union collapsed at the beginning of 1990s, the pharmacy sector has gone through tremendous changes. The pharmacy market shifted from a centrally controlled, one supplier system to an industry in which multiple distributors are competing in importing, wholesaling, and retailing of medicinal products. In the Baltic States, the number of pharmacies has not increased during the last years and companies have been growing mainly by acquisitions. Especially in Estonia the market is saturated and price competition is fierce. Similarly, in Latvia and Lithuania, markets are consolidating and wholesalers are growingly taking part in retailing by acquiring smaller chains. In Russia, the market is still fragmented and only one national pharmacy chain can be named, pharmacy chain “36.6”. Pharmacy chains are growing mostly through organic growth and competition between the biggest players is relatively low. The Russian market clearly offers many opportunities for international pharmaceutical operators. The ageing population, growing level of income, and changing living habits are creating new and growing needs for modern healthcare services and products.
Resumo:
A study of D +π−, D 0π+ and D ∗+π− final states is performed using pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, collected at a centre-of-mass energy of 7 TeV with the LHCb detector. The D 1(2420)0 resonance is observed in the D ∗+π− final state and the D∗2(2460) resonance is observed in the D +π−, D 0π+ and D ∗+π− final states. For both resonances, their properties and spin-parity assignments are obtained. In addition, two natural parity and two unnatural parity resonances are observed in the mass region between 2500 and 2800 MeV. Further structures in the region around 3000 MeV are observed in all the D ∗+π−, D +π− and D 0π+ final states.
Resumo:
Reliance on private partners to help provide infrastructure investment and service delivery is increasing in the United States. Numerous studies have examined the determinants of the degree of private participation in infrastructure projects as governed by contract type. We depart from this simple public/private dichotomy by examining a rich set of contractual arrangements. We utilize both municipal and state-level data on 472 projects of various types completed between 1985 and 2008. Our estimates indicate that infrastructure characteristics, particularly those that reflect stand alone versus network characteristics, are key factors influencing the extent of private participation. Fiscal variables, such as a jurisdiction’s relative debt level, and basic controls, such as population and locality of government, increase the degree of private participation, while a greater tax burden reduces private participation.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal, voltage-independent Na(+) channels that are transiently activated by extracellular acidification. They are involved in pain sensation, the expression of fear, and in neurodegeneration after ischemic stroke. Our study investigates the role of extracellular subunit interactions in ASIC1a function. We identified two regions involved in critical intersubunit interactions. First, formation of an engineered disulfide bond between the palm and thumb domains leads to partial channel closure. Second, linking Glu-235 of a finger loop to either one of two different residues of the knuckle of a neighboring subunit opens the channel at physiological pH or disrupts its activity. This suggests that one finger-knuckle disulfide bond (E235C/K393C) sets the channel in an open state, whereas the other (E235C/Y389C) switches the channel to a non-conducting state. Voltage-clamp fluorometry experiments indicate that both the finger loop and the knuckle move away from the β-ball residue Trp-233 during acidification and subsequent desensitization. Together, these observations reveal that ASIC1a opening is accompanied by a distance increase between adjacent thumb and palm domains as well as a movement of Glu-235 relative to the knuckle helix. Our study identifies subunit interactions in the extracellular loop and shows that dynamic changes of these interactions are critical for normal ASIC function.
Resumo:
Earlier workers have suggested that disjoint hydrocarbons have nearly-degenerate lowest-lying singlet and triplet states while non-disjoint (or joint) hydrocarbons should be ground-state triplets. PM3 results for an appropriate selection of alternant hydrocarbons are inconsistent with that generalization: disjoint, nonclassical, alternant hydrocarbons show the strongest predilection for triplet ground states.
Resumo:
Spatiotemporal chaos is predicted to occur in n-doped semiconductor superlattices with sequential resonant tunneling as their main charge transport mechanism. Under dc voltage bias, undamped time-dependent oscillations of the current (due to the motion and recycling of electric field domain walls) have been observed in recent experiments. Chaos is the result of forcing this natural oscillation by means of an appropriate external microwave signal.
Resumo:
We present a theory of the surface noise in a nonhomogeneous conductive channel adjacent to an insulating layer. The theory is based on the Langevin approach which accounts for the microscopic sources of fluctuations originated from trapping¿detrapping processes at the interface and intrachannel electron scattering. The general formulas for the fluctuations of the electron concentration, electric field as well as the current-noise spectral density have been derived. We show that due to the self-consistent electrostatic interaction, the current noise originating from different regions of the conductive channel appears to be spatially correlated on the length scale correspondent to the Debye screening length in the channel. The expression for the Hooge parameter for 1/f noise, modified by the presence of Coulomb interactions, has been derived
Resumo:
The set of initial conditions for which the pseudoclassical evolution algorithm (and minimality conservation) is verified for Hamiltonians of degrees N (N>2) is explicitly determined through a class of restrictions for the corresponding classical trajectories, and it is proved to be at most denumerable. Thus these algorithms are verified if and only if the system is quadratic except for a set of measure zero. The possibility of time-dependent a-equivalence classes is studied and its physical interpretation is presented. The implied equivalence of the pseudoclassical and Ehrenfest algorithms and their relationship with minimality conservation is discussed in detail. Also, the explicit derivation of the general unitary operator which linearly transforms minimum-uncertainty states leads to the derivation, among others, of operators with a general geometrical interpretation in phase space, such as rotations (parity, Fourier).
Resumo:
FEMA's mission is to support our citizens and first responders to ensure that as a Nation we work together to build, sustain, and improve our capability to prepare for, protect against, respond to, recover from, and mitigate all hazards.
Resumo:
Core capabilities are under the above mission areas as outlined in the National Preparedness Goal. Planning, Public Information and Warning, and Operational Coordination cut across all five mission areas. Without these three cross-cutting capabilities, the other capabilities might not be achieved or could be weakened. Other core capabilities are aligned under a specific mission area, based on where it had the most relevance. Core capabilities alignment: Prevention capabilities focus on things related to preventing an imminent terrorist attack; by imminent, we mean an attack that is about to happen ; Protection capabilities focus on security— making sure things, systems, and people are protected ; Mitigation capabilities focus on risk, resilience and building a culture of preparedness; Response capabilities focus on meeting a community’s immediate needs when disaster strikes and finally, recovery capabilities focus on getting communities back on their feet.