979 resultados para chemical vapor deposition processes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A passively mode-locked diode end-pumped YVO4/Nd:YVO4 composite crystal laser with a five-mirror folded cavity was first demonstrated in this paper by using a low temperature semiconductor saturable absorber mirror grown by metal organic chemical vapor deposition. Both the Q-switching and continuous-wave mode locking operation were realized experimentally. A stable averaged output power of 10.15 W with pulse width of about 11.2-ps at a repetition rate of 113 MHz was obtained, and the optical-to-optical efficiency of 43% was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

电子邮箱nataliya.deyneka@uni-ulm.de

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of conductivity, photoconductivity and constant photocurrent method absorption measurements by DC and AC methods in hydrogenated silicon films with mixed amorphous-nanocrystalline structure are presented. A series of diphasic silicon films was deposited by very high frequency plasma enhanced chemical vapor deposition technique, using different hydrogen dilution ratios of silane. The increase of hydrogen dilution ratio results in five orders of magnitude increase of conductivity and a sharp increase of grain volume fraction. The comparison of the absorption spectra obtained by DC and AC methods showed that they are similar for silicon films with the predominantly amorphous structure and films with high grain volume fraction. However we found a dramatic discrepancy between the absorption spectra obtained by DC and AC constant photocurrent methods in silicon films deposited in the regime of the structure transition from amorphous to nanocrystalline state. AC constant photocurrent method gives higher absorption coefficient than DC constant photocurrent method in the photon energy range of 1.2-1.7 eV. This result indicates the possibility of crystalline grains contribution to absorption spectra measured by AC constant photocurrent method in silicon films with intermediate crystalline grain volume fraction. (c) 2008 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline 3C-SiC films are deposited on SiO2 coated Si substrates by low pressure chemical vapour deposition (LPCVD) with C3H8 and SiH4 as precursors. Controlled nitrogen doping is performed by adding NH3 during SiC growth to obtain the low resistivity 3C-SiC films. X-ray diffraction (XRD) patterns indicate that the deposited films are highly textured (111) orientation. The surface morphology and roughness are determined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface features are spherulitic texture with average grain size of 100 nm, and the rms roughness is 20nm (AFM 5 x 5 mu m images). Polycrystalline 3C-SiC films with highly orientational texture and good surface morphology deposited on SiO2 coated Si substrates could be used to fabricate rf microelectromechanical systems (MEMS) devices such as SiC based filters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an experimental demonstration of the interaction between the intrinsic second- and third-order optical fields in an Al0.53Ga0.47N/GaN heterostructure. The sample was deposited by metal-organic chemical vapor deposition on (0001) sapphire. The nonlinear optical coefficients of the sample, which were measured with a Mach-Zehnder interferometer system, quadratically increase with the applied modulating voltage, indicating the existence of the third-order optical field. The third-order signal was then detected by the Z-scan method and we calculated the built-in dc field on the AlGaN/GaN interface to confirm the strong interaction between the intrinsic second- and third-order optical fields. (c) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InN films grown on sapphire at different substrate temperatures from 550 degrees C to 700 degrees C by metalorganic chemical vapor deposition were investigated. The low-temperature GaN nucleation layer with high-temperature annealing (1100 degrees C) was used as a buffer for main InN layer growth. X-ray diffraction and Raman scattering measurements reveal that the quality of InN films can be improved by increasing the growth temperature to 600 degrees C. Further high substrate temperatures may promote the thermal decomposition of InN films and result in poor crystallinity and surface morphology. The photoluminescence and Hall measurements were employed to characterize the optical and electrical properties of InN films, which also indicates strong growth temperature dependence. The InN films grown at temperature of 600 degrees C show not only a high mobility with low carrier concentration, but also a strong infrared emission band located around 0.7 eV. For a 600 nm thick InN film grown at 600 degrees C, the Hall mobility achieves up to 938 cm(2)/Vs with electron concentration of 3.9 x 10(18) cm(-3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crack-free GaN films have been achieved by inserting an Indoped low-temperature (LT) AlGaN interlayer grown on silicon by metalorganic chemical vapor deposition. The relationship between lattice constants c and a obtained by X-ray diffraction analysis shows that indium doping interlayer can reduce the stress in GaN layers. The stress in GaN decreases with increasing trimethylindium (TMIn) during interlayer growth. Moreover, for a smaller TMIn flow, the stress in GaN decreases dramatically when In acts as a surfactant to improve the crystallinity of the AlGaN interlayer, and for a larger TMIn flow, the stress will increase again. The decreased stress leads to smoother surfaces and fewer cracks for GaN layers by using an In-doped interlayer than by using an undoped interlayer. In doping has been found to enhance the lateral growth and reduce the growth rate of the c face. It can explain the strain relief and cracks reduction in GaN films. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sapphire substrates were patterned by a chemical wet etching technique in the micro- and nanoscale to enhance the light output power of InGaN/GaN light-emitting diodes (LEDs). InGaN/GaN LEDs on a pyramidal patterned sapphire substrate in the microscale (MPSS) and pyramidal patterned sapphire substrate in the nanoscale (NPSS) were grown by metalorganic chemical vapor deposition. The characteristics of the LEDs fabricated on the MPSS and NPSS prepared by wet etching were studied and the light output powers of the LEDs fabricated on the MPSS and NPSS increased compared with that of the conventional LEDs fabricated on planar sapphire substrates. In comparison with the planar sapphire substrate, an enhancement in output power of about 29% and 48% is achieved with the MPSS and NPSS at an injection current of 20 mA, respectively. This significant enhancement is attributable to the improvement of the epitaxial quality of GaN-based epilayers and the improvement of the light extraction efficiency by patterned sapphire substrates. Additionally, the NPSS is more effective to enhance the light output power than the MPSS. (c) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminum nitride (AIN) thin films were deposited on Si (111) substrates by low pressure metalorganic chemical vapor deposition system. The effects of the V/III ratios on the film structure and surface morphology were systematically studied. The chemical states and vibration modes of AIN films were characterized by X-ray photoelectron spectroscopy and Fourier transform infrared spectrometer. The optical absorption property of the AIN films, characterized by ultraviolet-visible-near infrared spectrophotometer, exhibited a sharp absorption near the wavelength of 206 mm. The AIN (002) preferential orientation growth was obtained at the V/III ratio of 10,000 and the preferential growth mechanism is presented in this paper according to the thermodynamics and kinetics process of the AIN growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is studied whether there is any regular relationship between the yellow luminescence band and electron mobility of n-type GaN. For a series of GaN samples grown with the same Si doping, it is found that the electron mobility decreases with an increase of relative intensity of yellow luminescence, accompanied by an increase of edge dislocation density. Further research indicates that it is acceptors introduced by edge dislocations which lead to the concomitant changes of yellow luminescence and electron mobility. Similar changes are induced by Si doping in the n-type GaN samples with relatively low edge dislocation density. However, the relationship between the yellow luminescence and electron mobility of n-type GaN is not a simple one. A light Si doping may simultaneously increase yellow luminescence and electron mobility when Si doping plays a dominant role in reducing the carrier scattering. This means that even the intensity of yellow luminescence is often used as an indicator of material quality for GaN, it does not have any monotonous correlation with the electron mobility of GaN. (c) 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Ge/Si heterojunction light emitting diode with a p(+)-Ge/i-Ge/N+-Si structure was fabricated using the ultrahigh vacuum chemical vapor deposition technology on N+-Si substrate. The device had a good I-V rectifying behavior. Under forward bias voltage ranging from 1.1 to 2.5 V, electroluminescence around 1565 nm was observed at room temperature. The mechanism of the light emission is discussed by the radiative lifetime and the scattering rate. The results indicate that germanium is a potential candidate for silicon-based light source material. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3216577]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A silicon-on-insulator (SOI) optical fiber-to-waveguide spot-size converter (SSC) overlaid with specially treated silica is investigated for integrated optical circuits. Unlike the conventional process of simply depositing the hot silica on silicon waveguides, two successive layers of silicon dioxide were grown on etched SSC structures by PECVD (plasma-enhanced chemical vapor deposition). The two layers have 0.8% index contrast and supply stronger cladding for an incident light beam. Additionally, this process is able to reduce the effective refractive index of the input mode to less than 1.47 (extremely close to that of the fiber), substantially weakening the unwanted back reflection. Exploiting this technology, it was demonstrated that the SSC showed a theoretical low mode mismatch loss of 1.23 dB for a TE-like mode and has an experimental coupling efficiency of 66%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Si-doped nonpolar a-plane GaN films were grown on nanopatterned sapphire substrates by a low-pressure metal organic chemical vapor deposition (MOCVD) system. The structure, morphology and field emission properties of the sample were studied by means of high-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), and field emission measurement. The XRD analysis shows that the sample is a nonpolar a-plane (11 (2) over bar0) GaN film. The field emission measurement shows that the nonpolar GaN films exhibit excellent field emission properties with a threshold emission field of as low as 10 V/mu m at a current density of 0.63 mu A/cm(2), and a high field emission current density of 74 mA/cm(2) at an applied field of 24 V/mu m. Moreover, the Fowler-Nordheirn plot of the sample fits a near linear relation. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured hexagonal InN overlayers were heteroepitaxially deposited on vertically oriented c-axis GaN nanorods by metal-organic chemical vapor deposition. InN overlayers grown in radial directions are featured by a nonpolar heteroepitaxial growth mode on GaN nanorods, showing a great difference from the conventional InN growth on (0001) c-plane GaN template. The surface of InN overlayers is mainly composed of several specific facets with lower crystallographic indices. The orientation relationship between InN and GaN lattices is found to be [0001](InN) parallel to [0001](GaN) and [1100](InN)parallel to[1100](GaN). A strong photoluminescence of InN nanostructures is observed. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3177347]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From a single process, GaN layers were laterally overgrown on maskless stripe-patterned (111) silicon-on-insulator (SOI) substrates by metalorganic chemical vapor deposition. The influence of stress on the behavior of dislocations at the coalescence during growth was observed using transmission electron microscopy (TEM). Improvement of the crystallin equality of the GaN layer was demonstrated by TEM and micro-Raman spectroscopy. Furthermore, the benefits of SOI substrates for GaN growth are also discussed.