952 resultados para Kirchhoff plate equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the turbulent flow of the Non-Newtonian Carreau-Yasuda fluid will be studied. A skin friction equation for the turbulent flow of Carreau-Yasuda fluids will be derived assuming a logarithmic behavior of the turbulent mean velocity for the near wall flow out of the viscous sub layer. An alternative near wall characteristic length scale which takes into account the effects of the relaxation time will be introduced. The characteristic length will be obtained through the analysis of viscous region near the wall. The results compared with experimental data obtained with Tylose (methyl hydroxil cellulose) solutions showing good agreement. The relations between scales integral and dissipative obtained for length, time, velocity, kinetic energy, and vorticity will be derived for this type of fluid. When the power law index approach to unity the relations reduces to Newtonian case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propomos um novo método de migração em profundidade baseado na solução da equação da onda com densidade constante no domínio da freqüência. Uma aproximação de Padé complexa é usada para aproximar o operador de evolução aplicado na extrapolação do campo de ondas. Esse método reduz as imprecisões e instabilidades devido às ondas evanescentes e produz imagens com menos ruídos numéricos que aquelas obtidas usando-se a aproximação de Padé real para o operador exponencial, principalmente em meios com fortes variações de velocidades. Testes em dados de afastamento nulo do modelo de sal SEG/EAGE e nos dados de tiro comum 2-D Marmousi foram realizados. Os resultados obtidos mostram que o método de migração proposto consegue lidar com fortes variações laterais e também tem uma boa resposta para refletores com mergulhos íngremes. Os resultados foram comparados àqueles resultados obtidos com os métodos split-step Fourier (SSF), phase shift plus interpolarion (PSPI) e Fourier diferenças-finitas (FFD).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A teoria dos feixes gaussianos foi introduzida na literatura sísmica no início dos anos 80 por pesquisadores russos e tchecos, e foi originalmente utilizada no cálculo do campo de ondas eletromagnéticas, baseado na teoria escalar da difração. Na teoria dos feixes gaussianos, o campo de ondas sísmicas é obtido por uma integral, cujo o integrando é constituído de duas partes, a saber: (1) as amplitudes dos campos das ondas na vizinhança do ponto de observação e (2) a função fase de cada um desses campos de ondas, que neste caso é representada por um tempo de trânsito paraxial complexo. Como ferramenta de imageamento, mais precisamente como operador de migração, os primeiros trabalhos usando feixes gaussianos datam do final da década de 80 e início dos anos 90. A regularidade dos campos de ondas descritos pelos feixes gaussianos, além de sua alta precisão em regiões singulares do modelo de velocidades, tornaram o uso de feixes gaussianos como uma alternativa híbrida viável para a migração. Nesse trabalho, unimos a flexibilidade da migração tipo Kirchhoff em profundidade em verdadeira amplitude com a regularidade da descrição do campo de ondas, representado pela sobreposição de feixes gaussianos. Como forma de controlar de forma estável quantidades usadas na construção de feixes gaussianos, utilizamos informações advindas do volume de Fresnel, mais precisamente a zona de Fresnel ao redor do ponto de reflexão e a zona de Fresnel projetada, localizada ao redor do ponto de registro do sismograma e cuja a informação se encontra nas curvas de reflexão de dados sísmico. Nosso processo de migração pode ser chamado como uma migração Kirchhoff em verdadeira amplitude usando um operador de feixes gaussianos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O método de migração do tipo Kirchhoff se apresenta na literatura como uma das ferramentas mais importantes de todo o processamento sísmico, servindo de base para a resolução de outros problemas de imageamento, devido ao um menor custo computacional em relação aos métodos que tem por base a solução numérica da equação da onda. No caso da aplicação em três dimensões (3D), mesmo a migração do tipo Kirchhoff torna-se dispendiosa, no que se refere aos requisitos computacionais e até mesmo numéricos para sua efetiva aplicação. Desta maneira, no presente trabalho, objetivando produzir resultados com uma razão sinal/ruído maior e um menor esforço computacional, foi utilizado uma simplificação do meio denominado 2.5D, baseado nos fundamentos teóricos da propagação de feixes gaussianos. Assim, tendo como base o operador integral com feixes gaussianos desenvolvido por Ferreira e Cruz (2009), foi derivado um novo operador integral de superposição de campos paraxiais (feixes gaussianos), o mesmo foi inserido no núcleo do operador integral de migração Kirchhoff convencional em verdadeira amplitude, para a situação 2,5D, definindo desta maneira um novo operador de migração do tipo Kirchhoff para a classe pré-empilhamento em verdadeira amplitude 2.5D (KGB,do inglês Kirchhoff-Gausian-Beam). Posteriormente, tal operador foi particularizado para as configurações de medida afastamento comum (CO, do inglês common offset) e ângulo de reflexão comum (CA, do inglês common angle), ressaltando ainda, que na presente Tese foi também idealizada uma espécie de flexibilização do operador integral de superposição de feixes gaussianos, no que concerne a sua aplicação em mais de um domínio, quais sejam, afastamento comum e fonte comum. Nesta Tese são feitas aplicações de dados sintéticos originados a partir de um modelo anticlinal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nos últimos anos tem-se verificado um interesse crescente no desenvolvimento de algoritmos de imageamento sísmico com a finalidade de obter uma imagem da subsuperfície da terra. A migração pelo método de Kirchhoff, por exemplo, é um método de imageamento muito eficiente empregado na busca da localização de refletores na subsuperficie, quando dispomos do cálculo dos tempos de trânsito necessários para a etapa de empilhamento, sendo estes obtidos neste trabalho através da solução da equação eiconal. Primeiramente, é apresentada a teoria da migração de Kirchhoff em profundidade baseada na teoria do raio, sendo em seguida introduzida a equação eiconal, através da qual são obtidos os tempos de trânsitos empregados no empilhamento das curvas de difrações. Em seguida é desenvolvido um algoritmo de migração em profundidade fazendo uso dos tempos de trânsito obtidos através da equação eiconal. Finalmente, aplicamos este algoritmo a dados sintéticos contendo ruído aditivo e múltiplas e obtemos como resultado uma seção sísmica na profundidade. Através dos experimentos feitos neste trabalho observou-se que o algoritmo de migração desenvolvido mostrou-se bastante eficiente e eficaz na reconstrução da imagem dos refletores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove the approximate controllability of the semilinear heat equation in RN, when the nonlinear term is globally Lipschitz and depends both on the state u and its spatial gradient Ñu. The approximate controllability is viewed as the limit of a sequence of optimal control problems. In order to avoid the difficulties related to the lack of compactness of the Sobolev embeddings, we work with the similarity variables and use weighted Sobolev spaces.