1000 resultados para InAs island
Resumo:
In this work we report the photoluminescence (PL) and interband absorption study of Si-modulation-doped multilayer InAs/GaAs quantum dots grown by molecular beam epitaxy (MBE) on (100) oriented GaAs substrates. Low-temperature PL shows a distinctive double-peak feature. Power-dependent PL and transmission electron microscopy (TEM) confirm that they stem from the ground states emission of islands of bimodal size distribution. Temperature-dependent PL study indicates that the family of small dots is ensemble effect dominated while the family of large dots is likely to be dominated by the intrinsic property of single quantum dots (QDs). The temperature-dependent PL and interband absorption measurements are discussed in terms of thermalized redistribution of the carriers among groups of QDs of different sizes in the ensemble. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The size and shape evolution of self-assembled InAs quantum dots (QDs) influenced by 2.0 ML InAs seed layer has been systematically investigated for 2.0, 2.5, and 2.9 ML deposition on GaAs(100) substrate. Based on comparisons with the formation of large incoherent InAs islands on single-layer samples at late growth stage, the larger coherent InAs quantum dots at 2.9 ML deposition has been observed on the second InAs layer. A simple model analysis accounting for the surface strain distribution influenced by buried islands gives a stronger increment of critical QD diameter for dislocation nucleation on the second layer in comparison with the single-layer samples. Additionally, the inhibition of dislocation nucleation in InGaAs/GaAs large islands can also be explained by our theoretical results. (C) 2000 American Institute of Physics. [S0021-8979(00)08922-2].
Resumo:
Strained InAs nanostructures have been grown by solid-source molecular beam epitaxy in In0.52Al0.48As matrix on different InP substrate surfaces ((0 0 1) and (1 1 n)A/B (n = 1 - 5)). The morphology of the nanostructures was characterized using atomic force microscopy (AFM). The AFM results reveal interesting differences in the size, shape, and alignment of the nanostructures between different oriented surfaces. It was found that some faceted nanostructures tend to form on A-type surfaces, the shape and the alignment of these nanostructures show clear dependence on the substrate orientation. Samples grown on (0 0 1) and B-type surfaces showed preferentially dense round dots. Dots formed on (1 1 3)B, (1 1 3)B and (1 1 5)B surfaces have a higher dot density and size homogeneity, which shows a potential for the production of high-quality and customized self-assembled quantum dots for photonics applications. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
InAs self-organized quantum dots (QDs) grown on annealed low-temperature GaAs (LT-GaAs) epi-layers and on normal temperature GaAs buffer layers have been compared by transmission electron microscopy (TEM) and photoluminescence (PL) measurements. TEM evidences that self-organized QDs were formed with a smaller size and larger density than that on normal GaAs buffer layers. It is discussed that local tensile surface strain regions that are preferred sites for InAs islands nucleation are increased in the case of the LT-GaAs buffer layers due to exhibiting As precipitates. The PL spectra show a blue-shifted peak energy with narrower linewidth revealing the improvement of optical properties of the QDs grown on LT-GaAs epi-layers. It suggests us a new way to improve the uniformity and change the energy band structure of the InAs self-organized QDs by carefully controlling the surface stress states of the LT-GaAs buffers on which the QDs are formed. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Self-assembled InAs nanostructures on (0 0 1)InP substrate have been grown by molecular beam epitaxy (MBE) and evaluated by transmission electron microscopy (TEM) and photoluminescence (PL). It is found that the morphologies of InAs nanostructures depend strongly on the underlying alloy. Through introducing a lattice-matched underlying InAlGaAs layer on InAlAs buffer layer, the InAs quantum dots (QDs) can be much more uniform in size and great improvement in PL properties can be attained at the same time. In particular, 1.55 mu m luminescence at room temperature (RT) can be realized in InAs QDs deposited on (0 0 1)InP substrate with underlying InAlGaAs layer. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Self-assembled InAs quantum dots (QDs) in InAlAs grown on (001) and (311)B InP substrates by molecular beam epitaxy (MBE) have been comparatively investigated. A correlated study of atomic force microscopy (AFM) and photoluminescence (PL) disclosed that InAs QDs grown on high-index InP substrates can lead to high density and uniformity. By introducing a lattice-matched InAlGaAs overlayer on InAlAs buffer, still more dense and uniform InAs QDs were obtained in comparison with InAs QDs formed with only InAlAs matrix. Moreover, two-dimensional well-ordered InAs dots with regular shape grown on (311)B InP substrates are reported for the first time. We explained this exceptional phenomenon from strain energy combined with kinetics point of view. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Self-assembled InAs quantum wires (QWRs) embedded in In0.52Al0.48As, In0.53Ga0.47As, and (In0.52Al0.48As)(n)/(In0.53Ga0.47As)(m)-short-period-lattice matrices on InP(001) were fabricated with molecular beam epitaxy (MBE). These QWR lines are along [110], x 4 direction in the 2 x 4 reconstructed (001) surface as revealed with reflection high-energy electron diffraction (RHEED). Alignment of quantum wires in different layers in the InAs/spacer multilayer structures depends on the composition of spacer layers. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Optical and structural properties of self-organized InAs/GaAs quantum dots (QDs) with InxGa1-xAs or GaAs cover layers grown by molecular beam epitaxy (MBE) have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and photoluminescence (PL) measurements. The TEM and AFM images show that the surface stress of the InAs QDs was suppressed by overgrowth of a InxGa1-xAs covering layer on the top of the QDs and the uniformity of the QDs preserved. PL measurements reveal that red shifts of the PL emission due to the reduction of the surface strain of the InAs islands was observed and the temperature sensitivity of the PL emission energy was suppressed by overgrowth of InxGa1-xAs layers compared to that by overgrowth of GaAs layers.
Resumo:
The effects of InP substrate orientations on self-assembled InAs quantum dots (QDs) have been investigated by molecular beam epitaxy (MBE). A comparison between atomic force microscopy (AFM) and photoluminescence (PL) spectra shows that a high density of smaller InAs islands can be obtained by using such high index substrates. On the other hand, by introducing a lattice-matched underlying In0.52Al0.24Ga0.24As layer, the InAs QDs can be much more uniform in size and have a great improvement in PL properties. More importantly, 1.55-mu m luminescence at room temperature (RT) can be realized in InAs QDs deposited on (001) InP substrate with underlying In0.52Al0.24Ga0.24As layer. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We report on the characterization of thermally induced interdiffusion in InAs/GaAs quantum-dot superlattices with high-resolution x-ray diffraction and photoluminescence techniques. The dynamical theory is employed to simulate the measured x-ray diffraction rocking curves of the InAs/GaAs quantum-dot superlattices annealed at different temperatures. Excellent agreement between the experimental curves and the simulations is achieved when the composition, thickness, and stress variations caused by interdiffusion are taken in account. It is found that the significant In-Ga intermixing occurs even in the as-grown InAs/GaAs quantum dots. The diffusion coefficients at different temperatures are estimated. (C) 2000 American Institute of Physics. [S0003-6951(00)02440-2].
Resumo:
Systematic study of molecular beam epitaxy-grown self-assembled In(Ga)As/GaAs, In-AlAs/AlGaAs/GaAs, and InAs/InAlAs/InP quantum dots (QDs) is demonstrated. By adjusting growth conditions, surprising alignment, preferential elongation, and pronounced sequential coalescence of dots under the specific condition are realized. Room-temperature (RT) continuous-wave (CW) lasing at the wavelength of 960 nm with output power of 1 W is achieved from vertical coupled InAs/GaAs QDs ensemble. The RT threshold current density is 218 A/cm(2). An RT CW output power of 0.53 W ensures at least 3 000 h lasing (only drops 0.83 db). This is one of the best results ever reported.
Resumo:
The excitation transfer processes in vertically self organized pairs of unequal-sized quantum dots (QD's), which are created in InAs/GaAs bilayers with different InAs deposition amounts in the first and second layers, have been investigated experimentally by photoluminescence technique. The distance between the two dot layers is varied from 3 to 12 nm. The optical properties of the formed pairs of unequal-sized QD's with clearly discernible ground-state transition energy depend on the spacer thickness. When the spacer layer of GaAs is thin enough, only one photoluminescence peak related to the large QD ensemble has been observed as a result of strong electronic coupling in the InAs QD pairs. The results provide evidence for nonresonant energy transfer from the smaller QDs in the second layer to the larger QD's in the first layer in such an asymmetric QD pair.
Resumo:
Self-assembled InAs quantum dots are fabricated on a GaAs substrate by molecular beam epitaxy. The dots are covered by several monolayers of In0.2Ga0.8As before a GaAs cap layer and an in situ postgrowth annealing is performed to tune the emission to higher energy. The temperature dependence of photoluminescence from this structure demonstrates a slower redshift rate of the peak position, a gradual broadening of the linewidth and an abnormal enhancement of integrated intensity as the temperature is increased from 15 to 300 K. These phenomena are closely related to the introduction of an InGaAs layer and to the intermixing of In and Ga atoms during annealing. We propose a model to explain the unusual increase in PL intensity, which fits the experimental data well. (C) 2000 American Institute of Physics. [S0021-8979(00)04618-1].
Resumo:
Large blueshift and linewidth increase in photoluminescence (PL) spectra of InAs quantum dots (QD's) in n-i-p-i GaAs superlattice were observed. By increasing the excitation intensity from 0.5 to 32 W/cm(2), the PL peak position blueshifted 18 meV, and the linewidth increased by 20 meV. Such large changes are due to the state-filling effects of the QD's resulted from the separation of photogenerated electrons and holes caused by the doping potential.
Resumo:
InAs self-organized quantum dots (QDs) grown on annealed low temperature GaAs (LT-GaAs) epi-layer were investigated by transmission electron microscopy (TEM) and photoluminescence (PL) measurement. TEM showed that QDs formed on annealed LT-GaAs epi-layer have a smaller size and a higher density than QDs formed on normal GaAs buffer layer. In addition, the PL spectra analysis showed that the LT-GaAs epi-layer resulted in a blue shift in peak energy, and a narrower linewidth in the PL peak. The differences were attributed to the point defects and As precipitates in annealed LT-GaAs epi-layer for the point defects and As precipitates change the strain field of the surface. The results provide a method to improve the uniformity and change the energy band structure of the QDs by controlling the defects in the LT-GaAs epi-layer.