961 resultados para Forensics computer science
Resumo:
Spontaneous facial expressions differ from posed ones in appearance, timing and accompanying head movements. Still images cannot provide timing or head movement information directly. However, indirectly the distances between key points on a face extracted from a still image using active shape models can capture some movement and pose changes. This information is superposed on information about non-rigid facial movement that is also part of the expression. Does geometric information improve the discrimination between spontaneous and posed facial expressions arising from discrete emotions? We investigate the performance of a machine vision system for discrimination between posed and spontaneous versions of six basic emotions that uses SIFT appearance based features and FAP geometric features. Experimental results on the NVIE database demonstrate that fusion of geometric information leads only to marginal improvement over appearance features. Using fusion features, surprise is the easiest emotion (83.4% accuracy) to be distinguished, while disgust is the most difficult (76.1%). Our results find different important facial regions between discriminating posed versus spontaneous version of one emotion and classifying the same emotion versus other emotions. The distribution of the selected SIFT features shows that mouth is more important for sadness, while nose is more important for surprise, however, both the nose and mouth are important for disgust, fear, and happiness. Eyebrows, eyes, nose and mouth are important for anger.
Resumo:
The adoption of IT Governance (ITG) continues to be an important topic for research. Many researchers have focused their attention on how these practices are currently being implemented in the many diverse areas and industries. Literature shows that a majority of these studies have only been based on industries and organizations in developed countries. There exist very few researches that look specifically within the context of a developing country. Furthermore, there seems to be a lack of research on identifying the barriers or inhibitors to IT Governance adoption within the context of an emerging yet still developing Asian country. This research sets out to justify, substantiate and improve on a priori model developed to study the barriers to the adoption of ITG practice using qualitative data obtained through a series of semi-structured interviews conducted on organizations in Malaysia.
Resumo:
In the context of learning paradigms of identification in the limit, we address the question: why is uncertainty sometimes desirable? We use mind change bounds on the output hypotheses as a measure of uncertainty and interpret ‘desirable’ as reduction in data memorization, also defined in terms of mind change bounds. The resulting model is closely related to iterative learning with bounded mind change complexity, but the dual use of mind change bounds — for hypotheses and for data — is a key distinctive feature of our approach. We show that situations exist where the more mind changes the learner is willing to accept, the less the amount of data it needs to remember in order to converge to the correct hypothesis. We also investigate relationships between our model and learning from good examples, set-driven, monotonic and strong-monotonic learners, as well as class-comprising versus class-preserving learnability.
Resumo:
In this paper, we describe ongoing work on online banking customization with a particular focus on interaction. The scope of the study is confined to the Australian banking context where the lack of customization is evident. This paper puts forward the notion of using tags to facilitate personalized interactions in online banking. We argue that tags can afford simple and intuitive interactions unique to every individual in both online and mobile environments. Firstly, through a review of related literature, we frame our work in the customization domain. Secondly, we define a range of taggable resources in online banking. Thirdly, we describe our preliminary prototype implementation with respect to interaction customization types. Lastly, we conclude with a discussion on future work.
Resumo:
In this paper, we describe on-going work on mobile banking customization, particularly in the Australian context. The use of user-defined tags to facilitate personalized interactions in the mobile context is explored. The aim of this research is to find ways to improve mobile banking interaction. Customization is more significant in the mobile context than online due to factors such as smaller screen sizes and limited software and hardware capabilities, placing an increased emphasis on usability. This paper explains how user-defined tags can aid different types of customization at the interaction level. A preliminary prototype has been developed to demonstrate the mechanics of the proposed approach. Potential implications, design decisions and limitations are discussed with an outline of future work.
Resumo:
In cloud computing, resource allocation and scheduling of multiple composite web services is an important and challenging problem. This is especially so in a hybrid cloud where there may be some low-cost resources available from private clouds and some high-cost resources from public clouds. Meeting this challenge involves two classical computational problems: one is assigning resources to each of the tasks in the composite web services; the other is scheduling the allocated resources when each resource may be used by multiple tasks at different points of time. In addition, Quality-of-Service (QoS) issues, such as execution time and running costs, must be considered in the resource allocation and scheduling problem. Here we present a Cooperative Coevolutionary Genetic Algorithm (CCGA) to solve the deadline-constrained resource allocation and scheduling problem for multiple composite web services. Experimental results show that our CCGA is both efficient and scalable.
Resumo:
Recently, user tagging systems have grown in popularity on the web. The tagging process is quite simple for ordinary users, which contributes to its popularity. However, free vocabulary has lack of standardization and semantic ambiguity. It is possible to capture the semantics from user tagging and represent those in a form of ontology, but the application of the learned ontology for recommendation making has not been that flourishing. In this paper we discuss our approach to learn domain ontology from user tagging information and apply the extracted tag ontology in a pilot tag recommendation experiment. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.
Resumo:
The School of Electrical and Electronic Systems Engineering at Queensland University of Technology, Brisbane, Australia (QUT), offers three bachelor degree courses in electrical and computer engineering. In all its courses there is a strong emphasis on signal processing. A newly established Signal Processing Research Centre (SPRC) has played an important role in the development of the signal processing units in these courses. This paper describes the unique design of the undergraduate program in signal processing at QUT, the laboratories developed to support it, and the criteria that influenced the design.
Resumo:
In dynamic and uncertain environments such as healthcare, where the needs of security and information availability are difficult to balance, an access control approach based on a static policy will be suboptimal regardless of how comprehensive it is. The uncertainty stems from the unpredictability of users’ operational needs as well as their private incentives to misuse permissions. In Role Based Access Control (RBAC), a user’s legitimate access request may be denied because its need has not been anticipated by the security administrator. Alternatively, even when the policy is correctly specified an authorised user may accidentally or intentionally misuse the granted permission. This paper introduces a novel approach to access control under uncertainty and presents it in the context of RBAC. By taking insights from the field of economics, in particular the insurance literature, we propose a formal model where the value of resources are explicitly defined and an RBAC policy (entailing those predictable access needs) is only used as a reference point to determine the price each user has to pay for access, as opposed to representing hard and fast rules that are always rigidly applied.
Resumo:
Recently, user tagging systems have grown in popularity on the web. The tagging process is quite simple for ordinary users, which contributes to its popularity. However, free vocabulary has lack of standardization and semantic ambiguity. It is possible to capture the semantics from user tagging into some form of ontology, but the application of the resulted ontology for recommendation making has not been that flourishing. In this paper we discuss our approach to learn domain ontology from user tagging information and apply the extracted tag ontology in a pilot tag recommendation experiment. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.
Resumo:
A diagnostic method based on Bayesian Networks (probabilistic graphical models) is presented. Unlike conventional diagnostic approaches, in this method instead of focusing on system residuals at one or a few operating points, diagnosis is done by analyzing system behavior patterns over a window of operation. It is shown how this approach can loosen the dependency of diagnostic methods on precise system modeling while maintaining the desired characteristics of fault detection and diagnosis (FDD) tools (fault isolation, robustness, adaptability, and scalability) at a satisfactory level. As an example, the method is applied to fault diagnosis in HVAC systems, an area with considerable modeling and sensor network constraints.
Resumo:
As the graphics race subsides and gamers grow weary of predictable and deterministic game characters, game developers must put aside their “old faithful” finite state machines and look to more advanced techniques that give the users the gaming experience they crave. The next industry breakthrough will be with characters that behave realistically and that can learn and adapt, rather than more polygons, higher resolution textures and more frames-per-second. This paper explores the various artificial intelligence techniques that are currently being used by game developers, as well as techniques that are new to the industry. The techniques covered in this paper are finite state machines, scripting, agents, flocking, fuzzy logic and fuzzy state machines decision trees, neural networks, genetic algorithms and extensible AI. This paper introduces each of these technique, explains how they can be applied to games and how commercial games are currently making use of them. Finally, the effectiveness of these techniques and their future role in the industry are evaluated.
Resumo:
Computational journalism involves the application of software and technologies to the activities of journalism, and it draws from the fields of computer science, the social sciences, and media and communications. New technologies may enhance the traditional aims of journalism, or may initiate greater interaction between journalists and information and communication technology (ICT) specialists. The enhanced use of computing in news production is related in particular to three factors: larger government data sets becoming more widely available; the increasingly sophisticated and ubiquitous nature of software; and the developing digital economy. Drawing upon international examples, this paper argues that computational journalism techniques may provide new foundations for original investigative journalism and increase the scope for new forms of interaction with readers. Computer journalism provides a major opportunity to enhance the delivery of original investigative journalism, and to attract and retain readers online.