913 resultados para Computer Vision and Robotics (Autonomous Systems)
Resumo:
One of the main problems in Computer Vision and Close Range Digital Photogrammetry is 3D reconstruction. 3D reconstruction with structured light is one of the existing techniques and which still has several problems, one of them the identification or classification of the projected targets. Approaching this problem is the goal of this paper. An area based method called template matching was used for target classification. This method performs detection of area similarity by correlation, which measures the similarity between the reference and search windows, using a suitable correlation function. In this paper the modified cross covariance function was used, which presented the best results. A strategy was developed for adaptative resampling of the patterns, which solved the problem of deformation of the targets due to object surface inclination. Experiments with simulated and real data were performed in order to assess the efficiency of the proposed methodology for target detection. The results showed that the proposed classification strategy works properly, identifying 98% of targets in plane surfaces and 93% in oblique surfaces.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
This paper introduces the Optimum-Path Forest (OPF) classifier for static video summarization, being its results comparable to the ones obtained by some state-of-the-art video summarization techniques. The experimental section has been conducted using several image descriptors in two public datasets, followed by an analysis of OPF robustness regarding one ad-hoc parameter. Future works are guided to improve OPF effectiveness on each distinct video category.
Resumo:
Recently there has been a considerable interest in dynamic textures due to the explosive growth of multimedia databases. In addition, dynamic texture appears in a wide range of videos, which makes it very important in applications concerning to model physical phenomena. Thus, dynamic textures have emerged as a new field of investigation that extends the static or spatial textures to the spatio-temporal domain. In this paper, we propose a novel approach for dynamic texture segmentation based on automata theory and k-means algorithm. In this approach, a feature vector is extracted for each pixel by applying deterministic partially self-avoiding walks on three orthogonal planes of the video. Then, these feature vectors are clustered by the well-known k-means algorithm. Although the k-means algorithm has shown interesting results, it only ensures its convergence to a local minimum, which affects the final result of segmentation. In order to overcome this drawback, we compare six methods of initialization of the k-means. The experimental results have demonstrated the effectiveness of our proposed approach compared to the state-of-the-art segmentation methods.
Resumo:
[EN] In this paper we present a variational technique for the reconstruction of 3D cylindrical surfaces. Roughly speaking by a cylindrical surface we mean a surface that can be parameterized using the projection on a cylinder in terms of two coordinates, representing the displacement and angle in a cylindrical coordinate system respectively. The starting point for our method is a set of different views of a cylindrical surface, as well as a precomputed disparity map estimation between pair of images. The proposed variational technique is based on an energy minimization where we balance on the one hand the regularity of the cylindrical function given by the distance of the surface points to cylinder axis, and on the other hand, the distance between the projection of the surface points on the images and the expected location following the precomputed disparity map estimation between pair of images. One interesting advantage of this approach is that we regularize the 3D surface by means of a bi-dimensio al minimization problem. We show some experimental results for large stereo sequences.
Resumo:
[EN] In the last years we have developed some methods for 3D reconstruction. First we began with the problem of reconstructing a 3D scene from a stereoscopic pair of images. We developed some methods based on energy functionals which produce dense disparity maps by preserving discontinuities from image boundaries. Then we passed to the problem of reconstructing a 3D scene from multiple views (more than 2). The method for multiple view reconstruction relies on the method for stereoscopic reconstruction. For every pair of consecutive images we estimate a disparity map and then we apply a robust method that searches for good correspondences through the sequence of images. Recently we have proposed several methods for 3D surface regularization. This is a postprocessing step necessary for smoothing the final surface, which could be afected by noise or mismatch correspondences. These regularization methods are interesting because they use the information from the reconstructing process and not only from the 3D surface. We have tackled all these problems from an energy minimization approach. We investigate the associated Euler-Lagrange equation of the energy functional, and we approach the solution of the underlying partial differential equation (PDE) using a gradient descent method.
Resumo:
[EN]In this paper, we address the challenge of gender classi - cation using large databases of images with two goals. The rst objective is to evaluate whether the error rate decreases compared to smaller databases. The second goal is to determine if the classi er that provides the best classi cation rate for one database, improves the classi cation results for other databases, that is, the cross-database performance.
Resumo:
[EN]In this paper, we focus on gender recognition in challenging large scale scenarios. Firstly, we review the literature results achieved for the problem in large datasets, and select the currently hardest dataset: The Images of Groups. Secondly, we study the extraction of features from the face and its local context to improve the recognition accuracy. Diff erent descriptors, resolutions and classfii ers are studied, overcoming previous literature results, reaching an accuracy of 89.8%.
Resumo:
Das Verständnis von Leistungsverfügbarkeit, wie sie in der VDI-Richtlinie 4486 definiert ist, reicht für die Planung komplexer, dynamischer und teil-autonomer Systeme nicht aus. Die Definition in der VDI 4486 setzt den Fokus ausschließlich auf den Erfüllungsgrad vereinbarter Prozesse bei der Inbetriebnahme lo-gistischer Anlagen und regelt die Messungen und Be-rechnungen der Leistungsverfügbarkeit zu diesem Zeitpunkt. Es bleibt die Frage, wie ein Materialflusssystem für eine spezifizierte Leistungsverfügbarkeit geplant werden kann. Dazu werden die Wirkzusammenhänge zwischen dem logistischen System und seinen Sub-Systemen z.B. vertikale Integration von Wirkzusammenhängen der Instandhaltung, von Echtzeiteffekten der Kommunikationsprozesse oder Effekten der Ma-schinensteuerung, betrachtet.