Gender classification in large databases
Data(s) |
24/11/2015
24/11/2015
2012
|
---|---|
Resumo |
<p>[EN]In this paper, we address the challenge of gender classi - cation using large databases of images with two goals. The rst objective is to evaluate whether the error rate decreases compared to smaller databases. The second goal is to determine if the classi er that provides the best classi cation rate for one database, improves the classi cation results for other databases, that is, the cross-database performance.</p> |
Identificador |
http://hdl.handle.net/10553/15085 716508 <p>10.1007/978-3-642-33275-3_9</p> |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
<p>Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. 17th Iberoamerican Congress, CIARP 2012. Berlin: Springer, 2012 (Lecture Notes in Computer Science, ISSN 0302-9743; vol. 7441, pp 74-81). ISBN 978-3-642-33274-6. Online ISBN 978-3-642-33275-3</p> |
Palavras-Chave | #120304 Inteligencia artificial |
Tipo |
info:eu-repo/semantics/conferenceObject |