Static Video Summarization through Optimum-Path Forest Clustering
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
18/03/2015
18/03/2015
01/01/2014
|
Resumo |
This paper introduces the Optimum-Path Forest (OPF) classifier for static video summarization, being its results comparable to the ones obtained by some state-of-the-art video summarization techniques. The experimental section has been conducted using several image descriptors in two public datasets, followed by an analysis of OPF robustness regarding one ad-hoc parameter. Future works are guided to improve OPF effectiveness on each distinct video category. |
Formato |
893-900 |
Identificador |
http://dx.doi.org/10.1007/978-3-319-12568-8_108 Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014. Berlin: Springer-verlag Berlin, v. 8827, p. 893-900, 2014. 0302-9743 http://hdl.handle.net/11449/116222 10.1007/978-3-319-12568-8_108 WOS:000346407400108 |
Idioma(s) |
eng |
Publicador |
Springer |
Relação |
Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014 |
Direitos |
closedAccess |
Palavras-Chave | #video summarization #optimum-path forest #clustering |
Tipo |
info:eu-repo/semantics/conferencePaper |