Static Video Summarization through Optimum-Path Forest Clustering


Autoria(s): Martins, G. B.; Afonso, L. C. S.; Osaku, D.; Almeida, Jurandy; Papa, João Paulo; BayroCorrochano, E.; Hancock, E.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

18/03/2015

18/03/2015

01/01/2014

Resumo

This paper introduces the Optimum-Path Forest (OPF) classifier for static video summarization, being its results comparable to the ones obtained by some state-of-the-art video summarization techniques. The experimental section has been conducted using several image descriptors in two public datasets, followed by an analysis of OPF robustness regarding one ad-hoc parameter. Future works are guided to improve OPF effectiveness on each distinct video category.

Formato

893-900

Identificador

http://dx.doi.org/10.1007/978-3-319-12568-8_108

Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014. Berlin: Springer-verlag Berlin, v. 8827, p. 893-900, 2014.

0302-9743

http://hdl.handle.net/11449/116222

10.1007/978-3-319-12568-8_108

WOS:000346407400108

Idioma(s)

eng

Publicador

Springer

Relação

Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014

Direitos

closedAccess

Palavras-Chave #video summarization #optimum-path forest #clustering
Tipo

info:eu-repo/semantics/conferencePaper