1000 resultados para Análise Matemática
Resumo:
Actas VI Congreso Iberoamericano De Pedagogía(pp.292-298. Disponível em http://ediciones.ucsh.cl/ojs/index.php?journal=congresodepedagogia&page=article&op=view&path%5B%5D=369.
Resumo:
Tese de Doutoramento, Educação (Tecnologia Educativa), 26 de Julho de 2013, Universidade dos Açores.
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação do Instituto Politécnico de Castelo Branco para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Educação Pré- Escolar e Ensino do 1.º Ciclo do Ensino Básico.
Resumo:
(...) Os padrões decorativos que revestem as conchas de moluscos marinhos tropicais constituem um claro convite a uma análise mais profunda. Estes padrões são registos do crescimento das próprias conchas, seguindo leis como as da formação das dunas nos desertos ou da propagação de uma epidemia de gripe. (...) A diversidade dos padrões, que podem diferir em detalhes, mesmo entre conchas da mesma espécie, sugere um mecanismo morfogenético geral o suficiente para abranger variações espécime-a-espécime e espécie-a-espécie. Este mecanismo de reação-difusão é expresso, em termos matemáticos, por sistemas de equações diferenciais de derivadas parciais. (...)
Resumo:
Mestrado em Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação do Instituto Politécnico de Castelo Branco para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico.
Resumo:
Este estudo tem como objectivo investigar o papel que as representações, construídas por alunos do 1.o ano de escolaridade, desempenham na resolução de problemas de Matemática. Mais concretamente, a presente investigação procura responder às seguintes questões: Que representações preferenciais utilizam os alunos para resolver problemas? De que forma é que as diferentes representações são influenciadas pelas estratégias de resolução de problemas utilizadas pelos alunos? Que papéis têm os diferentes tipos de representação na resolução dos problemas? Nesta investigação assume-se que a resolução de problemas constitui uma actividade muito importante na aprendizagem da Matemática no 1.o Ciclo do Ensino Básico. Os problemas devem ser variados, apelar a estratégias diversificadas de resolução e permitir diferentes representações por parte dos alunos. As representações cativas, icónicas e simbólicas constituem importantes ferramentas para os alunos organizarem, registarem e comunicarem as suas ideias matemáticas, nomeadamente no âmbito da resolução de problemas, servindo igualmente de apoio à compreensão de conceitos e relações matemáticas. A metodologia de investigação segue uma abordagem interpretativa tomando por design o estudo de caso. Trata-se simultaneamente de uma investigação sobre a própria prática, correspondendo os quatro estudos de caso a quatro alunos da turma de 1.0 ano de escolaridade da investigadora. A recolha de dados teve lugar durante o ano lectivo 2007/2008 e recorreu à observação, à análise de documentos, a diários, a registos áudio/vídeo e ainda a conversas com os alunos. A análise de dados que, numa primeira fase, acompanhou a recolha de dados, teve como base o problema e as questões da investigação bem como o referencial teórico que serviu de suporte à investigação. Com base no referencial teórico e durante o início do processo de análise, foram definidas as categorias de análise principais, sujeitas posteriormente a um processo de adequação e refinamento no decorrer da análise e tratamento dos dados recolhidos -com vista à construção dos casos em estudo. Os resultados desta investigação apontam as representações do tipo icónico e as do tipo simbólico como as representações preferenciais dos alunos, embora sejam utilizadas de formas diferentes, com funções distintas e em contextos diversos. Os elementos simbólicos apoiam-se frequentemente em elementos icónicos, sendo estes últimos que ajudam os alunos a descompactar o problema e a interpretá-lo. Nas representações icónicas enfatiza-se o papel do diagrama, o qual constitui uma preciosa ferramenta de apoio ao raciocínio matemático. Conclui-se ainda que enquanto as representações activas dão mais apoio a estratégias de resolução que envolvem simulação, as representações icónicas e simbólicas são utilizadas com estratégias diversificadas. As representações construídas, com papéis e funções diferentes entre si, e que desempenham um papel crucial na correcta interpretação e resolução dos problemas, parecem estar directamente relacionadas com as caraterísticas da tarefa proposta no que diz respeito às estruturas matemáticas envolvidas. ABSTRACT; The objective of the present study is to investigate the role of the representations constructed by 1st grade students in mathematical problem solving. More specifically, this research is oriented by the following questions: Which representations are preferably used by students to solve problems? ln which way the strategies adopted by the students in problem solving influence those distinct representations? What is the role of the distinct types of representation in the problems solving process? ln this research it is assumed that the resolution of problems is a very important activity in the Mathematics learning at the first cycle of basic education. The problems must be varied, appealing to diverse strategies of resolution and allow students to construct distinct representations. The active, iconic and symbolic representations are important tools for students to organize, to record and to communicate their mathematical ideas, particularly in problem solving context, as well as supporting the understanding of mathematical concepts and relationships. The adopted research methodology follows an interpretative approach, and was developed in the context of the researcher classroom, originating four case studies corresponding to four 1 st grade students of the researcher's class. Data collection was carried out during the academic year of 2007/2008 and was based on observation, analysis of documents, diaries, audio and video records and informal conversations with students. The initial data analysis was based on the problems and issues of research, as well in the theoretical framework that supports it. The main categories of analysis were defined based on the theoretical framework, and were subjected to a process of adaptation and refining during data processing and analysis aiming the -case studies construction. The results show that student's preferential representations are the iconic and the symbolic, although these types of representations are used in different ways, with different functions and in different contexts. The symbolic elements are often supported by iconic elements, the latter helping students to unpack the problem and interpret it. ln the iconic representations the role of the diagrams is emphasized, consisting in a valuable tool to support the mathematical reasoning. One can also conclude that while the active representations give more support to the resolution strategies involving simulation, the iconic and symbolic representations are preferably used with different strategies. The representations constructed with distinct roles and functions, are crucial in the proper interpretation and resolution of problems, and seem to be directly related to the characteristics of the proposed task with regard to the mathematical structures involved.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Educação, Programa de Pós-Graduação em Educação, 2015.
Resumo:
O presente texto pretende ser um contributo na investigação educacional, em especial ao nível das estratégias de formação de professores, focalizando-se em processos reflexivos que decorrem da utilização de (e)portfolios no contexto da formação de professores. Tendo em conta a experiência de estágio que acontece ao longo de um ano letivo no curso de Mestrado em Educação Pré-Escolar, a metodologia formativa implementada no âmbito da unidade curricular de Didática da Matemática na Educação Pré-Escolar, durante o 1º semestre do ano letivo de 2012/2013, privilegiou as situações reais do contexto educativo em que cada estudante desenvolveu a sua intervenção pedagógica, que funcionaram como ponto de partida para os processos reflexivos de natureza pessoal, académica e profissional. A análise aos (e)portfolios elaborados permite descrever as vantagens da utilização desta estratégia de formação quer do ponto de vista do docente, quer na perspetiva dos futuros educadores de infância, salientando as inúmeras e diversas possibilidades de desenvolvimento profissional (e pessoal), designadamente no que se refere à construção do conhecimento didático no âmbito da Educação Matemática. A não definição prévia de uma estrutura rígida subjacente ao (e)portfolio, viabilizou, como mostraremos, uma aprendizagem personalizada que está patente não só na variedade das evidências incluídas, de acordo com um exercício reflexivo que as sustenta, como também nos distintos formatos que foram apresentados.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Humanas, Departamento de Geografia, 2015.
Resumo:
O presente relatório insere-se no âmbito das unidades curriculares de Prática de Ensino Supervisionada em Pré-Escolar e em 1º Ciclo do Ensino Básico, inseridas no Mestrado em Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico da Universidade de Évora. A investigação traduzida neste relatório decorreu nos dois contextos acima referidos, sendo primeiramente realizada no contexto de Educação Pré-Escolar e seguidamente no contexto de 1º Ciclo do Ensino Básico. O principal objetivo da investigação centra-se no desenvolvimento das capacidades de resolver problemas em matemática, tanto em crianças mais pequenas, como mais tarde no início da escolaridade obrigatória. Surgiu assim a questão orientadora da investigação: Que práticas devo realizar para contribuir para que as/os crianças/alunos consigam tornar-se bons resolvedores de problemas? Seguiram-se a esta outras três questões no sentido auxiliar a investigação: Como lidam as/os crianças/alunos com a resolução de problemas? Que estratégias utilizam as/os crianças/alunos para resolver problemas? Que representações usam as/os crianças/alunos na resolução de problemas? No desenvolvimento da investigação foi realizada uma sequência didática de tarefas matemáticas de exploração de resolução de problemas onde foram recolhidos os dados para uma posterior análise, tendo em conta não só os objetivos da investigação como os referenciais teóricos. Concluiu-se que a metodologia utilizada desenvolveu a capacidade de resolver problemas dos estudantes, ou seja, a exploração de problemas utilizando diferentes estratégias e representações, tal como a partilha de conhecimentos e a comunicação matemática, são ferramentas essenciais para uma intervenção eficaz no que concerne à resolução de problemas; Supervised Teaching Practice in Preschool Education and Teaching of the Primary School: Developing the capacities to solve problems in mathematics Abstract: The present report is inserted in the context of the curricular unit Supervised Teaching Practice in Preschool Education and in Primary School, integrated in Master in Preschool Education and Teaching Primary School at University of Évora. This research was held in two different contexts, the first one was performed in a pre-school classroom, and later the second one in classroom of first year of Primary School. The main objective of the research was focused on the development of the capacities to solve mathematical problems either in small children, or later in the beginning of compulsory schooling. As so, the question guiding this investigation emerged: Which practices should I perform to help children/students become better problem solvers? After this, other three questions came up in order to help the research: How do children/students deal with solving problems? What strategies do children/students use to solve problems? What representations do children/students use to solve problems? Throughout this research a didactic intervention consisting in a sequence of mathematical tasks to explore the resolution of problems was performed, allowing data collection for a latter analysis, based not only on the objectives and initial research questions, but also on theoretical approaches consulted. We came to the conclusion that the ability of students to solve problems was improved with the methodology used in this research, meaning that, challenging students with problems using different strategies and representations, such as knowledge sharing and mathematical communication, are essential tools for effective intervention concerning problem solving.
Resumo:
Dissertação de Mestrado apresentada ao Instituto Superior de Psicologia Aplicada para obtenção de grau de Mestre na especialidade de Psicologia Educacional.
Resumo:
A presente investigação tem como objectivo o estudo das concepções dos alunos sobre a avaliação das aprendizagens na disciplina de Matemática em anos terminais dos 1º e 2° ciclos do Ensino Básico. Em particular, procurou-se estudar e comparar as concepções que alunos desses anos tinham sobre a avaliação e as práticas avaliativas dos seus professores, e compreender se existiam algumas relações de dependência entre essas concepções e a perspectiva face à Matemática e o desempenho escolar desses alunos. O enquadramento teórico está organizado em dois capítulos. O primeiro relacionado com a avaliação e o segundo referente às concepções. Este estudo segue uma metodologia de natureza interpretativa. A recolha de dados foi feita através da aplicação de um questionário a quatro turmas, uma do 4o e outra do 6° ano de escolaridade de dois agrupamentos distintos, um de Elvas e outro de Portalegre, e de entrevista semi-estruturada a dois alunos por turma. A análise de dados foi organizada em tomo de duas categorias: (i) perspectivas face à Matemática e (ii) perspectiva face à avaliação das aprendizagens. Os resultados do estudo indicam que as concepções sobre a avaliação das aprendizagens em Matemática dos alunos participantes incidem, preferencialmente, sobre sentimentos, consequências, funções e instrumentos de avaliação. Verifica-se uma tendência para a existência de relações de dependência entre a imagem negativa da Matemática escolar e a concepção de avaliação associada aos sentimentos. Alunos com classificações negativas a Matemática associa, igualmente, a avaliação a sentimentos. Já os alunos que têm uma imagem positiva da Matemática, assim com os que têm classificações mais elevadas, tendem a associar a avaliação às suas consequências. No que diz respeito às práticas avaliativas que lhes têm sido proporcionadas, os alunos do 1º e do 2°ciclos apresentam concepções quase semelhantes, reconhecendo as fichas de avaliação como os instrumentos com mais peso para o professor na atribuição de notas no final do período. Os alunos do 1º ciclo são os que mais revelam concordar que o professor está atento às suas dificuldades. Porém, quer os alunos do 1 o e do 2°ciclos não reconhecem poder combinar com o professor a forma como são avaliados. ABSTRACT; The main purpose of the present work is to study the students' beliefs on assessment learning related to the Mathematics subject in ending years of 1st and 2nd key stage of elementary school. ln particular, the research was aimed to study and compare the students’ beliefs that pupils of those particular years had on assessment and the assessment practices of their teachers and also if there were any kind of dependence relationships between those beliefs and the perspective towards Mathematics and those students' school performance. The theoretical framework is organized in two chapters. The first related with the assessment and the second regarding the beliefs. This study follows a methodology of interpretative nature. The data gathering was done through the application of a questionnaire to four classes, one of the 4th and another of the 6th year of two different school groups, one belonging to Elva’s and another one to Portalegre and also through a semi-structured interview done to two students per group. The data analysis was organized around two categories: (i) perspectives towards Mathematics and (ii) perspective towards assessment learning. The results of the study show that the beliefs of those students on assessment learning on Mathematics are preferably based on feelings, consequences, functions and assessment instruments. ln general terms, there seems to be dependence relationships between the Mathematics negative image and the assessment conception associated to feelings. Students with negative marks at Mathematics also associate assessment to feelings. Those who have a positive Mathematics image, as well as those with higher marks at the subject, seem to associate assessment to its consequences. Concerning the assessment practices that have been provided to students from 1 51 and 2nd key stage of elementary school, these same pupils show very similar beliefs, pointing the summative tests as having higher importance when the assessment term comes. The students of the 1st key stage of elementary school are those who most agree that the teacher is attentive to their difficulties. Even so, both groups of students say that they cannot negotiate with their teacher the way they are supposed to be assessed.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade UnB Gama, Faculdade de Tecnologia, Programa de Pós-graduação em Integridade de Materiais da Engenharia, 2016.
Resumo:
Este estudo tem como principal objetivo compreender e analisar o modo como crianças de creche e jardim-de-infância resolvem problemas matemáticos e o que pode constranger a resolução. Em particular, procurei analisar a atividade matemática que as crianças desenvolvem quando se confrontam com problemas matemáticos e os desafios com que se deparam. Do ponto de vista metodológico, o estudo enquadra-se numa abordagem qualitativa de investigação e num paradigma interpretativo. Além disso, trata-se de uma investigação-ação orientada pela questão “como otimizar a atividade de resolver problemas matemáticos em contextos de educação de infância?”. Neste âmbito, propus a quatro crianças de creche e a 21 de jardim-de-infância um conjunto de tarefas selecionadas para, potencialmente, terem, para si, algum grau de desafio. Os principais métodos de recolha de dados foram a observação participante, a análise documental e um inquérito por questionário realizado às educadoras cooperantes. O estudo ilustra que é possível envolver crianças de creche e de jardim-de-infância numa atividade de resolução de problemas matemáticos e que esta atividade é favorecida se o contexto dos problemas estiver próximo do que fazem no dia-a-dia da sala. Durante o processo de resolução das tarefas propostas, foram mobilizadas e trabalhadas diversas noções matemáticas. Na creche, todas as crianças evidenciaram possuir conhecimentos acerca da noção topológica “dentro de” e “fora de” e algumas foram bem-sucedidas no uso do processo de classificação, tendo em conta um critério. Neste âmbito, recorreram a representações ativas. No jardim-de-infância, todas as crianças conseguiram fazer a contagem sincronizada das letras do seu nome, de indicar a quantidade de letras, o que indicia o conhecimento da noção de cardinal, e de representar esta quantidade recorrendo tanto a numerais como a representações icónicas. Além disso, foram capazes de interpretar uma tabela de modo a construir um gráfico com barras e de elaborar um pictograma, o que revela possuírem conhecimentos ao nível da literacia estatística. Por último, algumas crianças foram bem-sucedidas na descoberta de estratégias de resolução de problemas que lhes permitiram inventariar exaustivamente todas as possibilidades de resolução e contar, organizadamente, estas possibilidades. No decurso desta atividade surgiram tentativas de generalização, embora nem sempre corretas, sobressaindo o recurso a representações ativas nomeadamente à dramatização de situações. Quanto aos desafios com que se depararam destacam-se, no caso da creche, o uso correto do processo de classificação. No caso do jardim-de-infância, as crianças demonstraram dificuldades em distinguir a legenda do pictograma dos dados, em resolver um problema em que estava em jogo o sentido combinatório da multiplicação e em encontrar estratégias de generalização. O estudo indicia, ainda, que é essencial que o educador proponha tarefas diversificadas e desafiantes que, partindo sempre da curiosidade e interesse das crianças, lhes permitam trabalhar com ideias matemáticas importantes e representar adequadamente o conhecimento com que lidam.