986 resultados para ATOMIC-FORCE MICROSCOPY
Resumo:
High-mobility Al0.3Ga0.7N/AlN/GaN high electron mobility transistors (HEMT) structure has been grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrate. Electron mobility of 2185 cm(2)/V s at room temperature and 15,400 cm(2)/V s at 80 K with 2DEG density of 1.1 X 10(13) cm(-2) are achieved. The corresponding sheet resistance of the HEMT wafer is 258.7 Omega/sq. The AlN interfacial layer between the GaN buffer and the AlGaN barrier layer reduces the alloy disorder scattering. X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) measurements have been conducted, and confirmed that the wafer has a high crystal quality. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The chemical properties of AlxGa1-xN surfaces exposed to air for different time periods are investigated by atomic force microscopy (AFM), photoluminescence (PL) measurement and X-ray photoelectron spectroscopy (XPS). PL and AFM results show that AlxGa1-xN samples exhibit different surface characteristics for different air-exposure times and Al contents. The XPS spectra of the Al 2p and Ga 2p core levels indicate that the peaks shifted slightly, from an Al-N to an Al-O bond and from a Ga-N to a Ga-O bond. All of these results show that the epilayer surface contains a large amount of Ga and Al oxides. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Mosaic structure in InN layers grown by metalorganic chemical vapor deposition at various temperatures has been investigated by X-ray diffraction (XRD). With a combination of Williamson-Hall measurement and fitting of twist angles, it was found that variation of growth temperature from 450 to 550 degrees C leads to the variation of the lateral coherence length, vertical coherence length, tilt and twist of mosaic blocks in InN films in a, respectively, monotonic way. In particular, mosaic tilt increases whereas mosaic twist decreases with elevating temperature. Atomic force microscopy shows the morphological difference of the InN nucleation layers grown at 450 and 550 degrees C. Different coalescence thickness and temperature-dependent in-plane rotation of InN nuclei are considered to account for the XRD results. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Hexangular indium nitride nanoflower pattern is observed from scanning electron microscopy and atomic force microscopy. The sample is grown on c-plane (0001) sapphire by metal organic chemical vapor deposition with intentional introduction of hydrogen gas. With the aid of hydrogen, a stable existence of metallic indium is achieved. This will induce the growth of InN nanoflowers via self-catalysis vapor-liquid-solid (VLS) process. It is found that the VLS process is modulated by the interface kinetics and thermodynamics among the sapphire substrate, indium, and InN, which leads to the special morphology of the authors' InN nanoflower pattern. (c) 2006 American Institute of Physics.
Resumo:
Self-ordered porous alumina films on a semi-insulated GaAs substrate were prepared in oxalic acid aqueous solutions by three-step anodization. The I-t curve of anodization process was recorded to observe time effects of anodization. Atomic force microscopy was used to investigate structure and morphology of alumina films. It was revealed that the case of oxalic acid resulted in a self-ordered porous structure, with the pore diameters of 60-70 nm, the pore density of the order of about 10(10) pore cm(-2), and interpore distances of 95-100nm. At the same time the pore size and shape change with the pore widening time. Field-enhanced dissolution model and theory of deformation relaxation combined were brought forward to be the cause of self-ordered pore structure according to I-t curve of anodization and structure characteristics of porous alumina films. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
InAs quantum dots (QDs) were grown on In0.15Ga0.85As strained layers by molecular beam epitaxy on GaAs (0 0 1) substrates. Atomic force microscopy and transmission electron microscopy study have indicated that In0.15Ga0.85As ridges and InAs QDs formed at the inclined upside of interface misfit dislocations (MDs). By testifying the MDs are mixed 60 degrees dislocations and calculating the surface stress over them when they are 12-180 nm below the surface, we found the QDs prefer nucleating on the side with tensile stress of the MDs and this explained why the ordering of QDs is weak when the InGaAs layer is relatively thick. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Mn-doped Si films were prepared on Si(001) substrates by magnetron cosputtering and post-annealing process. The structural, morphological and magnetic properties of the films have been investigated. X-ray diffraction results show that the as-prepared film is amorphous. By annealing at 800 degrees C, however, the film is crystallized. There is no secondary phase found except Si in the two films. Chemical mapping shows that no segregation of the Mn atoms appears in the annealed film. Atomic force microscopy images of the films indicate that the annealed film has a granular feature that covers uniformly the film surface while there is no such kind of characteristic in the as-prepared film. The field dependence of magnetization was measured using an alternating gradient magnetometer, and it has been indicated that the annealed film shows room-temperature ferromagnetism. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
High resistivity unintentionally doped GaN films were grown on (0001) sapphire substrates by metalorganic chemical vapor deposition. The surface morphology of the layer was measured by both atomic force microscopy and scanning electron microscopy. The results show that the films have mirror-like surface morphology with root mean square of 0.3 nm. The full width at half maximum of double crystal X-ray diffraction rocking curve for (0002) GaN is about 5.22 arc-min, indicative of high crystal quality. The resistivity of the GaN epilayers at room temperature and at 250 degrees C was measured to be approximate 10(9) and 10(6) Omega(.)cm respectively, by variable temperature Hall measurement. Deep level traps in the GaN epilayers were investigated by thermally stimulated current and resistivity measurements.
Resumo:
Surface micro-roughness, surface chemical properties, and surface wettability are three important aspects of wafer surfaces during a wafer cleaning process, which determine the bonding quality of ordinary direct wafer bonding. In this study, InP wafers are divided into four groups and treated by different chemical processes. Subsequently, the characteristics of the treated InP surfaces are carefully studied by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurements. The optimal wafer treatment method for wafer bonding is determined by comparing the results of the processes as a whole. This optimization is later evaluated by a scanning electronic microscope (SEM), and the ridge waveguide 1.55 mu m Si-based InP/InGaAsP multi-quantum-well laser chips are also fabricated. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
For the InAs/GaAs quantum-dot system, the evolution of the wetting layer (WL) with the InAs deposition thickness has been studied by reflectance difference spectroscopy (RDS) in combination with atomic force microscopy and photoluminescence. One transition related to the light hole in the WL has been observed clearly in RDS, from which its transition energy and in-plane optical anisotropy (OA) are determined. The evolution of WL with the InAs dot formation and ripening has been discussed. In addition, the remarkable changes in OA at the onsets of the dot formation and ripening have been observed, implying the mode transitions of atom transport between the WL and the dots.
Resumo:
Two types of InAs self-assembled Quantum dots (QDs) were prepared by Molecular beam epitaxy. Atomic force microscopy (AFM) measurements showed that, compared to QDs grown on GaAs substrate, QDs grown on InGaAs layer has a significantly enhanced density. The short spacing (several nanometer) among QDs stimulates strong coupling and leads to a large red-shift of the 1.3 mu m photoluminescence (PL) peak. We study systematically the dependence of PL lifetime on the QDs size, density and temperature (1). We found that, below 50 K, the PL lifetime is insensitive to temperature, which is interpreted from the localization effects. As T increases, the PL lifetime increases, which can be explained from the competition between the carrier redistribution and thermal emission at higher temperature. The increase of carriers in QDs migrated from barriers and wetting layer (WL), and the redistribution of carriers among QDs enhance the PL lifetime as T increases. The thermal emission and non-radiative recombination have effects to reduce the PL lifetime at higher T. As a result, the radiative recombination lifetime is determined by the wave function overlapping of electrons and holes in QDs, and QDs with different densities have different PL lifetime dependence on the QDs size. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
High quality ZnO films have been successfully grown on a Si (100) substrate by metal organic chemical vapour deposition with a gamma-Al2O3 buffer. The crystal structure, surface morphology and optical properties of the ZnO films were characterized by x-ray diffraction, Raman spectroscopy, atomic force microscopy and photoluminescence (PL) spectroscopy. The propel-ties of the films with the Al2O3 buffer were improved in comparison with those of as-grown ZnO films. It is shown that the ZnO films with the gamma-Al2O3 buffer grown on Si (100) substrates have a highly-preferential c-axis (0002) orientation, a narrow (0002) peak, smooth surface morphology and better PL spectral properties. This demonstrates that the use of gamma-Al2O3/Si as a ZnO substrate is beneficial for reducing the residual stress for further growth of ZnO films, compared with the growth on bulk Si substrates.
Resumo:
By combination of prepatterned substrate and self-organized growth, InAs islands are grown on the stripe-patterned GaAs (100) substrate by solid soul-cc molecular beam epitaxy. Four [011] stripe-patterned substrates different in pitch, depth, and sidewall angle, respectively, are used in this work. The surface morphology obtained by atomic force microscopy shows that the InAs quantum dots can be formed either on the ridge or on the sidewall of the stripes near the bottom, depending on the structure of the stripes on the patterned substrate. The mechanism determining the nucleation position of the InAs dots is discussed. The optical properties of the InAs dots on the patterned substrates are also investigated by photo luminescence. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Various low-temperature (LT) ultra-thin buffer layers have been fabricated on the GaAs (001) substrate. The buffer layer is decoupled from the host substrate by introducing low-temperature defects. The 400 nm In0.25Ga0.75As films were grown on these substrates to test the 'compliant' effects of the buffer layers. Atomic force microscopy, photoluminescence, double crystal x-ray diffraction and transmission electron microscopy were used to estimate the quality of the ln(0.25)Ga(0.75)As layer. The measurements indicated that the misfit strains in the epilayer can be accommodated by the LT ultra-thin buffer layer. The strain accommodation effects of the LT defects have been discussed in detail.
Resumo:
Low-indium-content self-assembled InGaAs/GaAs quantum dots (SAQD) were grown using solid-source molecular beam epitaxy (MBE) and investigated by atomic force microscopy and photoluminescence (PL) spectroscopy. Silicon, which was doped at different quantum dot (QD) growth stages, markedly increased the density of QD. We obtained high density In0.35Ga0.65As/GaAs(001) quantum dots of 10(11)/cm(2) at a growth temperature of 520degreesC. PL spectra and distribution statistics show the high quality and uniformity of our silicon-doped samples. The density increment can be explained using the lattice-hardening mechanism due to silicon doping.