950 resultados para Computational grids (Computer systems)
Resumo:
This work presents algorithms for the calculation of the electrostatic interaction in partially periodic systems. The framework for these algorithms is provided by the simulation package ESPResSo, of which the author was one of the main developers. The prominent features of the program are listed and the internal structure is described. In the following, algorithms for the calculation of the Coulomb sum in three dimensionally periodic systems are described. These methods are the foundations for the algorithms for partially periodic systems presented in this work. Starting from the MMM2D method for systems with one non-periodic coordinate, the ELC method for these systems is developed. This method consists of a correction term which allows to use methods for three dimensional periodicity also for the case of two periodic coordinates. The computation time of this correction term is neglible for large numbers of particles. The performance of MMM2D and ELC are demonstrated by results from the implementations contained in ESPResSo. It is also discussed, how different dielectric constants inside and outside of the simulation box can be realized. For systems with one periodic coordinate, the MMM1D method is derived from the MMM2D method. This method is applied to the problem of the attraction of like-charged rods in the presence of counterions, and results of the strong coupling theory for the equilibrium distance of the rods at infinite counterion-coupling are checked against results from computer simulations. The degree of agreement between the simulations at finite coupling and the theory can be characterized by a single parameter gamma_RB. In the special case of T=0, one finds under certain circumstances flat configurations, in which all charges are located in the rod-rod plane. The energetically optimal configuration and its stability are determined analytically, which depends on only one parameter gamma_z, similar to gamma_RB. These findings are in good agreement with results from computer simulations.
Resumo:
Die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen fasziniert sowohl aus angewandter als auch theoretischer Sicht. Sie ist ein wichtiger Aspekt in vielen Anwendungen, unter anderem in chirugischen Implantaten oder Biosensoren. Sie ist außerdem ein Beispiel für theoretische Fragestellungen betreffend die Grenzfläche zwischen harter und weicher Materie. Fest steht, dass Kenntnis der beteiligten Mechanismen erforderlich ist um die Wechselwirkung zwischen Proteinen und Oberflächen zu verstehen, vorherzusagen und zu optimieren. Aktuelle Fortschritte im experimentellen Forschungsbereich ermöglichen die Untersuchung der direkten Peptid-Metall-Bindung. Dadurch ist die Erforschung der theoretischen Grundlagen weiter ins Blickfeld aktueller Forschung gerückt. Eine Möglichkeit die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen zu erforschen ist durch Computersimulationen. Obwohl Simulationen von Metalloberflächen oder Proteinen als Einzelsysteme schon länger verbreitet sind, bringt die Simulation einer Kombination beider Systeme neue Schwierigkeiten mit sich. Diese zu überwinden erfordert ein Mehrskalen-Verfahren: Während Proteine als biologische Systeme ausreichend mit klassischer Molekulardynamik beschrieben werden können, bedarf die Beschreibung delokalisierter Elektronen metallischer Systeme eine quantenmechanische Formulierung. Die wichtigste Voraussetzung eines Mehrskalen-Verfahrens ist eine Übereinstimmung der Simulationen auf den verschiedenen Skalen. In dieser Arbeit wird dies durch die Verknüpfung von Simulationen alternierender Skalen erreicht. Diese Arbeit beginnt mit der Untersuchung der Thermodynamik der Benzol-Hydratation mittels klassischer Molekulardynamik. Dann wird die Wechselwirkung zwischen Wasser und den [111]-Metalloberflächen von Gold und Nickel mittels eines Multiskalen-Verfahrens modelliert. In einem weiteren Schritt wird die Adsorbtion des Benzols an Metalloberflächen in wässriger Umgebung studiert. Abschließend wird die Modellierung erweitert und auch die Aminosäuren Alanin und Phenylalanin einbezogen. Dies eröffnet die Möglichkeit realistische Protein- Metall-Systeme in Computersimulationen zu betrachten und auf theoretischer Basis die Wechselwirkung zwischen Peptiden und Oberflächen für jede Art Peptide und Oberfläche vorauszusagen.
Resumo:
Computer simulations have become an important tool in physics. Especially systems in the solid state have been investigated extensively with the help of modern computational methods. This thesis focuses on the simulation of hydrogen-bonded systems, using quantum chemical methods combined with molecular dynamics (MD) simulations. MD simulations are carried out for investigating the energetics and structure of a system under conditions that include physical parameters such as temperature and pressure. Ab initio quantum chemical methods have proven to be capable of predicting spectroscopic quantities. The combination of these two features still represents a methodological challenge. Furthermore, conventional MD simulations consider the nuclei as classical particles. Not only motional effects, but also the quantum nature of the nuclei are expected to influence the properties of a molecular system. This work aims at a more realistic description of properties that are accessible via NMR experiments. With the help of the path integral formalism the quantum nature of the nuclei has been incorporated and its influence on the NMR parameters explored. The effect on both the NMR chemical shift and the Nuclear Quadrupole Coupling Constants (NQCC) is presented for intra- and intermolecular hydrogen bonds. The second part of this thesis presents the computation of electric field gradients within the Gaussian and Augmented Plane Waves (GAPW) framework, that allows for all-electron calculations in periodic systems. This recent development improves the accuracy of many calculations compared to the pseudopotential approximation, which treats the core electrons as part of an effective potential. In combination with MD simulations of water, the NMR longitudinal relaxation times for 17O and 2H have been obtained. The results show a considerable agreement with the experiment. Finally, an implementation of the calculation of the stress tensor into the quantum chemical program suite CP2K is presented. This enables MD simulations under constant pressure conditions, which is demonstrated with a series of liquid water simulations, that sheds light on the influence of the exchange-correlation functional used on the density of the simulated liquid.
Resumo:
The monitoring of cognitive functions aims at gaining information about the current cognitive state of the user by decoding brain signals. In recent years, this approach allowed to acquire valuable information about the cognitive aspects regarding the interaction of humans with external world. From this consideration, researchers started to consider passive application of brain–computer interface (BCI) in order to provide a novel input modality for technical systems solely based on brain activity. The objective of this thesis is to demonstrate how the passive Brain Computer Interfaces (BCIs) applications can be used to assess the mental states of the users, in order to improve the human machine interaction. Two main studies has been proposed. The first one allows to investigate whatever the Event Related Potentials (ERPs) morphological variations can be used to predict the users’ mental states (e.g. attentional resources, mental workload) during different reactive BCI tasks (e.g. P300-based BCIs), and if these information can predict the subjects’ performance in performing the tasks. In the second study, a passive BCI system able to online estimate the mental workload of the user by relying on the combination of the EEG and the ECG biosignals has been proposed. The latter study has been performed by simulating an operative scenario, in which the occurrence of errors or lack of performance could have significant consequences. The results showed that the proposed system is able to estimate online the mental workload of the subjects discriminating three different difficulty level of the tasks ensuring a high reliability.
Resumo:
In this thesis the evolution of the techno-social systems analysis methods will be reported, through the explanation of the various research experience directly faced. The first case presented is a research based on data mining of a dataset of words association named Human Brain Cloud: validation will be faced and, also through a non-trivial modeling, a better understanding of language properties will be presented. Then, a real complex system experiment will be introduced: the WideNoise experiment in the context of the EveryAware european project. The project and the experiment course will be illustrated and data analysis will be displayed. Then the Experimental Tribe platform for social computation will be introduced . It has been conceived to help researchers in the implementation of web experiments, and aims also to catalyze the cumulative growth of experimental methodologies and the standardization of tools cited above. In the last part, three other research experience which already took place on the Experimental Tribe platform will be discussed in detail, from the design of the experiment to the analysis of the results and, eventually, to the modeling of the systems involved. The experiments are: CityRace, about the measurement of human traffic-facing strategies; laPENSOcosì, aiming to unveil the political opinion structure; AirProbe, implemented again in the EveryAware project framework, which consisted in monitoring air quality opinion shift of a community informed about local air pollution. At the end, the evolution of the technosocial systems investigation methods shall emerge together with the opportunities and the threats offered by this new scientific path.
Resumo:
Eine der offenen Fragen der aktuellen Physik ist das Verständnis von Systemen im Nichtgleichgewicht. Im Gegensatz zu der Gleichgewichtsphysik ist in diesem Bereich aktuell kein Formalismus bekannt der ein systematisches Beschreiben der unterschiedlichen Systeme ermöglicht. Um das Verständnis über diese Systeme zu vergrößern werden in dieser Arbeit zwei unterschiedliche Systeme studiert, die unter einem externen Feld ein starkes nichtlineares Verhalten zeigen. Hierbei handelt es sich zum einen um das Verhalten von Teilchen unter dem Einfluss einer extern angelegten Kraft und zum anderen um das Verhalten eines Systems in der Nähe des kritischen Punktes unter Scherung. Das Modellsystem in dem ersten Teil der Arbeit ist eine binäre Yukawa Mischung, die bei tiefen Temperaturen einen Glassübergang zeigt. Dies führt zu einer stark ansteigenden Relaxationszeit des Systems, so dass man auch bei kleinen Kräften relativ schnell ein nichtlineares Verhalten beobachtet. In Abhängigkeit der angelegten konstanten Kraft können in dieser Arbeit drei Regime, mit stark unterschiedlichem Teilchenverhalten, identifiziert werden. In dem zweiten Teil der Arbeit wird das Ising-Modell unter Scherung betrachtet. In der Nähe des kritischen Punkts kommt es in diesem Modell zu einer Beeinflussung der Fluktuationen in dem System durch das angelegte Scherfeld. Dies hat zur Folge, dass das System stark anisotrop wird und man zwei unterschiedliche Korrelationslängen vorfindet, die mit unterschiedlichen Exponenten divergieren. Infolgedessen lässt sich der normale isotrope Formalismus des "finite-size scaling" nicht mehr auf dieses System anwenden. In dieser Arbeit wird gezeigt, wie dieser auf den anisotropen Fall zu verallgemeinern ist und wie damit die kritischen Punkte, sowie die dazu gehörenden kritischen Exponenten berechnet werden können.
Resumo:
Signal proteins are able to adapt their response to a change in the environment, governing in this way a broad variety of important cellular processes in living systems. While conventional molecular-dynamics (MD) techniques can be used to explore the early signaling pathway of these protein systems at atomistic resolution, the high computational costs limit their usefulness for the elucidation of the multiscale transduction dynamics of most signaling processes, occurring on experimental timescales. To cope with the problem, we present in this paper a novel multiscale-modeling method, based on a combination of the kinetic Monte-Carlo- and MD-technique, and demonstrate its suitability for investigating the signaling behavior of the photoswitch light-oxygen-voltage-2-Jα domain from Avena Sativa (AsLOV2-Jα) and an AsLOV2-Jα-regulated photoactivable Rac1-GTPase (PA-Rac1), recently employed to control the motility of cancer cells through light stimulus. More specifically, we show that their signaling pathways begin with a residual re-arrangement and subsequent H-bond formation of amino acids near to the flavin-mononucleotide chromophore, causing a coupling between β-strands and subsequent detachment of a peripheral α-helix from the AsLOV2-domain. In the case of the PA-Rac1 system we find that this latter process induces the release of the AsLOV2-inhibitor from the switchII-activation site of the GTPase, enabling signal activation through effector-protein binding. These applications demonstrate that our approach reliably reproduces the signaling pathways of complex signal proteins, ranging from nanoseconds up to seconds at affordable computational costs.
Resumo:
This thesis develops an effective modeling and simulation procedure for a specific thermal energy storage system commonly used and recommended for various applications (such as an auxiliary energy storage system for solar heating based Rankine cycle power plant). This thermal energy storage system transfers heat from a hot fluid (termed as heat transfer fluid - HTF) flowing in a tube to the surrounding phase change material (PCM). Through unsteady melting or freezing process, the PCM absorbs or releases thermal energy in the form of latent heat. Both scientific and engineering information is obtained by the proposed first-principle based modeling and simulation procedure. On the scientific side, the approach accurately tracks the moving melt-front (modeled as a sharp liquid-solid interface) and provides all necessary information about the time-varying heat-flow rates, temperature profiles, stored thermal energy, etc. On the engineering side, the proposed approach is unique in its ability to accurately solve – both individually and collectively – all the conjugate unsteady heat transfer problems for each of the components of the thermal storage system. This yields critical system level information on the various time-varying effectiveness and efficiency parameters for the thermal storage system.
Resumo:
This dissertation presents the competitive control methodologies for small-scale power system (SSPS). A SSPS is a collection of sources and loads that shares a common network which can be isolated during terrestrial disturbances. Micro-grids, naval ship electric power systems (NSEPS), aircraft power systems and telecommunication system power systems are typical examples of SSPS. The analysis and development of control systems for small-scale power systems (SSPS) lacks a defined slack bus. In addition, a change of a load or source will influence the real time system parameters of the system. Therefore, the control system should provide the required flexibility, to ensure operation as a single aggregated system. In most of the cases of a SSPS the sources and loads must be equipped with power electronic interfaces which can be modeled as a dynamic controllable quantity. The mathematical formulation of the micro-grid is carried out with the help of game theory, optimal control and fundamental theory of electrical power systems. Then the micro-grid can be viewed as a dynamical multi-objective optimization problem with nonlinear objectives and variables. Basically detailed analysis was done with optimal solutions with regards to start up transient modeling, bus selection modeling and level of communication within the micro-grids. In each approach a detail mathematical model is formed to observe the system response. The differential game theoretic approach was also used for modeling and optimization of startup transients. The startup transient controller was implemented with open loop, PI and feedback control methodologies. Then the hardware implementation was carried out to validate the theoretical results. The proposed game theoretic controller shows higher performances over traditional the PI controller during startup. In addition, the optimal transient surface is necessary while implementing the feedback controller for startup transient. Further, the experimental results are in agreement with the theoretical simulation. The bus selection and team communication was modeled with discrete and continuous game theory models. Although players have multiple choices, this controller is capable of choosing the optimum bus. Next the team communication structures are able to optimize the players’ Nash equilibrium point. All mathematical models are based on the local information of the load or source. As a result, these models are the keys to developing accurate distributed controllers.
Resumo:
This chapter presents fuzzy cognitive maps (FCM) as a vehicle for Web knowledge aggregation, representation, and reasoning. The corresponding Web KnowARR framework incorporates findings from fuzzy logic. To this end, a first emphasis is particularly on the Web KnowARR framework along with a stakeholder management use case to illustrate the framework’s usefulness as a second focal point. This management form is to help projects to acceptance and assertiveness where claims for company decisions are actively involved in the management process. Stakeholder maps visually (re-) present these claims. On one hand, they resort to non-public content and on the other they resort to content that is available to the public (mostly on the Web). The Semantic Web offers opportunities not only to present public content descriptively but also to show relationships. The proposed framework can serve as the basis for the public content of stakeholder maps.
Resumo:
We review our recent work on protein-ligand interactions in vitamin transporters of the Sec-14-like protein. Our studies focused on the cellular-retinaldehyde binding protein (CRALBP) and the alpha-tocopherol transfer protein (alpha-TTP). CRALBP is responsible for mobilisation and photo-protection of short-chain cis-retinoids in the dim-light visual cycle or rod photoreceptors. alpha-TTP is a key protein responsible for selection and retention of RRR-alpha-tocopherol, the most active isoform of vitamin E in superior animals. Our simulation studies evidence how subtle chemical variations in the substrate can lead to significant distortion in the structure of the complex, and how these changes can either lead to new protein function, or be used to model engineered protein variants with tailored properties. Finally, we show how integration of computational and experimental results can contribute in synergy to the understanding of fundamental processes at the biomolecular scale.
Resumo:
This thesis covers a broad part of the field of computational photography, including video stabilization and image warping techniques, introductions to light field photography and the conversion of monocular images and videos into stereoscopic 3D content. We present a user assisted technique for stereoscopic 3D conversion from 2D images. Our approach exploits the geometric structure of perspective images including vanishing points. We allow a user to indicate lines, planes, and vanishing points in the input image, and directly employ these as guides of an image warp that produces a stereo image pair. Our method is most suitable for scenes with large scale structures such as buildings and is able to skip the step of constructing a depth map. Further, we propose a method to acquire 3D light fields using a hand-held camera, and describe several computational photography applications facilitated by our approach. As the input we take an image sequence from a camera translating along an approximately linear path with limited camera rotations. Users can acquire such data easily in a few seconds by moving a hand-held camera. We convert the input into a regularly sampled 3D light field by resampling and aligning them in the spatio-temporal domain. We also present a novel technique for high-quality disparity estimation from light fields. Finally, we show applications including digital refocusing and synthetic aperture blur, foreground removal, selective colorization, and others.