991 resultados para polymeric precursor method
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The electrochemical oxidation of 3,4-dihydroxycinnamic acid, caffeic acid, leads to a stable electroactive poly(caffeic acid) thin film containing quinone moiety on a preactivated glassy polymeric carbon electrode. The properties of the deposited films as well as the stability study under different experimental conditions were investigated. Taking advantage of the electrochemical behavior, an analytical method based on differential pulse voltammetry for determination of caffeic acid in red wine was proposed.
Resumo:
The sol-gel method combined with a spin-coating technique has been successfully applied for the preparation of rare-earth doped silica:germania films used for the fabrication of erbium-doped waveguide amplifiers (EDWA), presenting several advantages over other methods for the preparation of thin films. As with other methods, the sol-gel route also shows some drawbacks, such as cracks related to the thickness of silica films and high hydrolysis rate of certain precursors such as germanium alkoxides. This article describes the preparation and optical characterization of erbium and ytterbium co-doped SiO2:GeO2 crack-free thick films prepared by the sol-gel route combined with a spin-coating technique using a chemically stable non-aqueous germanium oxide solution as an alternative precursor. The non-crystalline films obtained are planar waveguides exhibiting a single mode at 1,550 nm with an average thickness of 3.9 mu m presenting low percentages of porosity evaluated by the Lorentz-Lorenz Effective Medium Approximation, and low stress, according to the refractive index values measured in both transversal electric and magnetic polarizations. Weakly confining core layers (0.3% < Delta n < 0.75%) were obtained according to the refractive index difference between the core and buffer layers, suggesting that low-loss coupling EDWA may be obtained. The life time of the erbium I-4(13/2) metastable state was measured as a function of erbium concentration in different systems and based on these values it is possible to infer that the hydroxyl group was reduced and the formation of rare-earth clusters was avoided.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
ZrTiO4 (ZT), obtained by the Pechini method, was used as precursor for obtaining PLZT (lead lanthanum zirconium titanate). An aqueous solution of oxalic acid was prepared with particles of ZT, Pb(NO3)(2) and La2O3. After the PbC2O4 and La2O3 precipitate on ZT particles, the materials were calcined and X-ray diffraction (XRD) showed the cubic phase of PLZT. This material was sintered, in two steps, and a density of about 8.0 g/cm(3) was obtained. After the second sintering the XRD pattern showed the occurrence of tetragonal and rhombohedral phases. This was caused by a stoichiometric deviation and the material showed a high optical transparency. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
Pure yttrium oxide or mixed with europium oxide (3 at%) were treated in supercritical isopropanolic suspension at 500degreesC for 20 It and filling degree of 50%. Products were supercritically dried and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), infrared spectroscopy (IR) and luminescence spectroscopy (LS). Particle shape is irregular with an equivalent diameter of ca. 5 mum. Cubic crystalline phase is mainly obtained and hydroxide ion in low concentration is detected by IR vibrational spectrum. Europium in this concentration does not extensively change such observed characteristics from the pure yttrium oxide. Luminescence spectra show that the doped product is a mixture of the two oxides added by oxyhydroxide impurities. Nevertheless, this precursor sample, after being heated at 900degreesC during 1 h, has all characteristics, especially luminescent ones, of the P22 commercial phosphor. (C) 2003 Elsevier B.V. (USA). All rights reserved.
Resumo:
The thermoreversible sol-gel transition is well-known in biological and organic polymeric systems but has not been reported for inorganic systems. In this paper we put in evidence a thermoreversible sol-gel transition for zirconyl chloride aqueous solutions modified by sulfuric acid in the ratio 3:1 Zr:SO4. The synthesis conditions are detailed and a variety of experimental techniques (turbidimetry, dynamic rheology, and EXAFS) have been employed for investigating the thermal reversibility and the chemical structure of this new material. Turbidimetric measurements performed for solutions containing different concentrations of precursor have evidenced that the sol-gel transformation temperature increases from 50 to 80 degrees C as the concentration of zirconyl chloride decreases from 0.22 to 0.018 mol L-1. A more detailed study has been done for the sample with [Zr] = 0.156 mol L-1, in which the sol-gel-sol transformation has been repeated several times by a cyclic variation of the temperature. The mechanical properties of this sample, evaluated by measuring the storage and the loss moduli, show a change from liquid like to viscoelastic to elastic behavior during the sol-gel transition and vice versa during the gel-sol one. In situ EXAFS measurements performed at the Zr K-edge show that no change of the local order around Zr occurs during the sol-gel-sol transition, in agreement with the concept of physical gel formation. We have proposed for the structure of the precursor an inner core made of hydroxyl and oxo groups bridging together zirconium atoms surrounded in surface by complexing sulfate ligands, the sulfate groups act as a protective layer, playing a key role in the linking propagation among primary particles during sol-gel-sol transition.
Resumo:
This work presents the study of substrate surface effects on rhodamine B-containing silica films obtained from TEOS (tetraethylorthosilicate) acid hydrolysis. Soda-lime glass substrates were treated with basic solution under different reaction times and temperatures. Rhodamine B-containing silica films were deposited on pre-treated substrates by the spin-coating method. The substrate surface directly affects film morphology and homogeneity. The films are formed by packed silica spheres which protect the dye against acid-base attack. Luminescence spectra present shifts on the dye emission maximum as expected for different pH values on the substrate surface depending on the alkaline treatment. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This study includes Ca-PZT in the morphotropic phase boundary, MPB process combining the Pechini method, (ZT) and the Partial oxalate method (Ca-PZT) by obtaining single phase particles of ZT phase with a high specific surface area (similar to 110 m(2)/g at 550 degrees C) and narrow particle size distribution. Lead and calcium oxalates were precipitated onto the ZT particle surface and reacted to a solid state interface ZT/Ca-PZT/PbO-CaO. A deviation of a coexistence region from F-T- and F-R-phases to F-R-phase (Zr rich region) was observed. Strong surface area reduction occurs by Ca-PZT crystallization at about 700 degreesC, and demonstrated high sinterability (2.40 m(2)/g - 350 nm) with apparent densities near to 99.9%. Different processing methods did not demonstrate superior results. Studies of calcined powder shows a high sinterability of powder calcined 3 h at 700 degrees C and sintered 3 h at 1000 degreesC coming up to 99.8% of relative density. (C) 2001 Kluwer Academic Publishers.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Ultra-fine NaNbO3 powder was prepared by the use of polymeric precursors. X-ray diffraction (XRD) results showed that this niobate nucleates from the amorphous precursor, with no intermediate phases, at low temperature (500°C). Studies by XRD and nitrogen adsorption/desorption showed that powders with high crystallinity ( ≈ 100%) and high surface areas (>20 m2/g) are obtained after calcination at 700°C for 5 h. Compacts of calcined powders showed high sinterability reaching 98% of theoretical density when sintered at 1190°C for 3 h.
Resumo:
In this work, zinc oxide samples were obtained from hydroxycarbonate by thermal decomposition at 300°C. Zinc hydroxycarbonate samples were produced by homogeneous precipitation over different periods of time. The method used to obtain zinc oxide produces different morphologies as a function of the precursor precipitation time. Among the obtained particle shapes were porous spherical aggregates, spherulitic needle aggregates, and single acicular particles. This work investigated spherulitic needle-aggregate formation and the correlation among morphology, domain size, and microstrain. Transmission electron microscopy data revealed that the acicular particles that form the spherulitic needle aggregates consist of nanometer crystallites. Apparent crystallite size and microstrain in the directions perpendicular to (h00), (h0l), (hk0), and (00l) planes were invariable as a function of precursor precipitation time. From the results, it was possible to conclude that the precursor precipitation period directly influenced the morphology of the zinc oxide but did not influence average crystallite size and microstrain for ZnO samples. Therefore, using this route, it was possible to prepare zinc oxide with different morphologies without microstructural alterations. © 2001 International Centre for Diffraction Data.
Resumo:
The complex perovskite compound 0.9PbMg 1/3Nb 2/3O 3-0.1PbTiO 3 is one of the most promising relaxor ceramic because the addition of lead titanate increases T m, by about 5°C/mol% from intrinsic T m value for pure PMN (near -7 to -15°C). A Ti-modified columbite precursor was used to prepare PMN-PT powders containing single perovskite phase. This variation on columbite route includes Ti insertion in MgNb 2O 6 orthorhombic structure so that individual PT synthesis becomes unnecessary. Furthermore, effects of Li additive on columbite and PMN-PT structures were studied by XRD to verify the phase formation at each processing step. XRD data were also used for the structural refinement by Rietveld method. The additive acts increasing columbite powders crystallinity, and the amount of perovskite phase was insignificantly decreased by lithium addition. By SEM micrographs it was observed that Li presence in PMN-PT powders leads to the formation of rounded primary particles and for lmol% of additive, the grain size is not changed, different from when this concentration is enhanced to 2mol%.