979 resultados para Ordnance, Naval
Resumo:
Las Tablas Astronómicas de Alfonso X el Sabio fueron realizadas en la ciudad de Toledo entre 1263 y 1270 por dos de los colaboradores habituales del Rey, Yehuda ibn Moshé e Isaac ibn Sid, ambos judíos. El manuscrito original no se conserva pero sí contamos con una copia de principios del siglo XVI (Ms. 3306, B.N.) que nos ha transmitido los cánones y el prólogo de las Tablas, proporcionándonos información acerca de quien, donde y cómo se desarrolló el proyecto. El equipo de astrónomos reunido en torno al Rey se valió de la herencia clásica recogida a través del mundo árabe así como de las innovaciones que se habían producido en al-Andalus para crear una obra de gran trascendencia en el panorama científico posterior, difundiéndose en copias manuscritas e impresas por toda Europa durante cuatro siglos.
Resumo:
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Sociais, Departamento de Antropologia, Programa de Pós-graduação em Antropologia Social, 2015.
Resumo:
Este relatório surge no âmbito do Mestrado em Treino Desportivo, pretendendo dar a conhecer as minhas aprendizagens e trabalho desenvolvido durante o estágio de carater profissionalizante realizado com a equipa de natação absoluta da Associação Naval Amorense ao longo da época 2014/2016. Este estágio permitiu-me analisar e intervir em diversos aspetos integrados no processo de treino da modalidade de natação, tais como: a análise e correção técnica, análise do planeamento da época desportiva e intervenção, tanto em contexto de competição como também em tarefas das sessões de treino. Desta forma, foi-me possível não só obter um conhecimento mais abrangente e real dos processos de treino, mas também, o enquadramento da informação e conhecimento que foram fornecidos ao longo de todo o meu percurso académico. Foi ainda possível acrescentar uma componente de investigação a este mesmo relatório, através de um projeto cientifico realizado com alguns dos nadadores de referência do clube.
Resumo:
A segurança da navegação e a diminuição dos acidentes marítimos assumem nos dias de hoje um papel de extrema importância a nível internacional, principalmente por parte da indústria marítima, e é na base desta preocupação que surgem organizações como a International Maritime Organization (IMO). Nesta organização, o estudo do fator humano no domínio marítimo tem tido grandes desenvolvimentos, não só através da regulamentação com também da sensibilização dos vários intervenientes. A fadiga no mar, embora seja um tema usual entre os navegantes, nunca houve uma grande sensibilização neste setor. Um tema que envolve a segurança do pessoal e que apenas recentemente foram elaborados estudos relativamente às suas causas, consequências e sobretudo à sua prevenção. É neste sentido que surge o Project Horizon, promovido pela União Europeia, com o objetivo de investigar os padrões de eficácia de alerta dos elementos responsáveis pela condução e manutenção das plataformas marítimas. Como produto final deste projeto europeu surge um protótipo de uma ferramenta de previsão da fadiga. A ferramenta “MARTHA – maritime alertness”, permite relacionar horas de descanso com horas de trabalho, sustentando a análise contínua do risco de fadiga. Este trabalho de investigação, onde é aplicado um protótipo de uma ferramenta para a previsão da fadiga, a bordo de uma unidade naval da Marinha Portuguesa, tem como objetivo a avaliação do risco da fadiga em diferentes regimes horários de bordo. Para este estudo foram elaborados observações de diferentes regimes horários de bordo, por forma a conseguir uma maior variedade de dados e poder analisar comparativamente o rendimento dos respetivos regimes. Esta pesquisa constitui ainda uma medida de sensibilização para a importância da implementação de políticas de gestão da fadiga a bordo das unidades navais.
Resumo:
Cognitive-energetical theories of information processing were used to generate predictions regarding the relationship between workload and fatigue within and across consecutive days of work. Repeated measures were taken on board a naval vessel during a non-routine and a routine patrol. Data were analyzed using growth curve modeling. Fatigue demonstrated a non-monotonic relationship within days in both patrols – fatigue was high at midnight, started decreasing until noontime and then increased again. Fatigue increased across days towards the end of the non-routine patrol, but remained stable across days in the routine patrol. The relationship between workload and fatigue changed over consecutive days in the non-routine patrol. At the beginning of the patrol, low workload was associated with fatigue. At the end of the patrol, high workload was associated with fatigue. This relationship could not be tested in the routine patrol, however it demonstrated a non-monotonic relationship between workload and fatigue – low and high workloads were associated with the highest fatigue. These results suggest that the optimal level of workload can change over time and thus have implications for the management of fatigue.
Resumo:
Sandwich components have emerged as light weight, efficient, economical, recyclable and reusable building systems which provide an alternative to both stiffened steel and reinforced concrete. These components are made of composite materials in which two metal face plates or Glassfibre Reinforced Cement (GRC) layers are bonded and form a sandwich with light weight compact polyurethane (PU) elastomer core. Existing examples of product applications are light weight sandwich panels for walls and roofs, Sandwich Plate System (SPS) for stadia, arena terraces, naval construction and bridges and Domeshell structures for dome type structures. Limited research has been conducted to investigate performance characteristics and applicability of sandwich or hybrid materials as structural flooring systems. Performance characteristics of Hybrid Floor Plate Systems comprising GRC, PU and Steel have not been adequately investigated and quantified. Therefore there is very little knowledge and design guidance for their application in commercial and residential buildings. This research investigates performance characteristics steel, PU and GRC in Hybrid Floor Plate Systems (HFPS) and develops a new floor system with appropriate design guide lines.
Resumo:
This introduction examines sixteen authors who have contributed to New Voices, New Visions: Challenging Australian Identities and Legacies. The editors explain that the authors draw on ideas, concepts, and theories about nation, identity, space, place,and power in order to rethink stories or reread large-scale and everyday media, private, or public events in new ways. In many cases, the authors are promoting debate on topics where a single viewpoint currently predominates. These authors are introducing to readers new visions and new voices about Australian society and the Australian identity. The editors also draw on the many books about Captain/Governor William Bligh to exemplify how history is constantly being reinterpreted, with new information aiding the reader’s understanding.
Resumo:
Bomb technicians perform their work while encapsulated in explosive ordnance disposal (EOD) suits. Designed primarily for safety, these suits have an unintended consequence of impairing the body’s natural mechanisms for heat dissipation. Purpose: To quantify the heat strain encountered during an EOD operational scenario in the tropical north of Australia. Methods: All active police male bomb technicians, located in a tropical region of Australia (n=4, experience 7 ± 2.1 yrs, age 34 ± 2 yrs, height 182.3 ± 5.4 cm, body mass 95 ± 4 kg, VO2max 46 ± 5.7 ml.kg-1.min-1) undertook an operational scenario wearing the Med-Eng EOD 9 suit and helmet (~32 kg). The climatic conditions ranged between 27.1–31.8°C ambient temperature, 66-88% relative humidity, and 30.7-34.3°C wet bulb globe temperature. The scenario involved searching a two story non air-conditioned building for a target; carrying and positioning equipment for taking an X-ray; carrying and positioning equipment to disrupt the target; and finally clearing the site. Core temperature and heart rate were continuously monitored, and were used to calculate a physiological strain index (PSI). Urine specific gravity (USG) assessed hydration status and heat associated symptomology were also recorded. Results: The scenario was completed in 121 ± 22 mins (23.4 ± 0.4% work, 76.5 ± 0.4% rest/recovery). Maximum core temperature (38.4 ± 0.2°C), heart rate (173 ± 5.4 bpm, 94 ± 3.3% max), PSI (7.1 ± 0.4) and USG (1.031 ± 0.002) were all elevated after the simulated operation. Heat associated symptomology highlighted that moderate-severe levels of fatigue and thirst were universally experienced, muscle weakness and heat sensations experienced by 75%, and one bomb technician reported confusion and light-headedness. Conclusion: All bomb technicians demonstrated moderate-high levels of heat strain, evidenced by elevated heart rate, core body temperature and PSI. Severe levels of dehydration and noteworthy heat-related symptoms further highlight the risks to health and safety faced by bomb technicians operating in tropical locations.
Resumo:
Carbon taxation governance is becoming increasingly popular, further evolving the polluter pays concept already well established in the built environment as a mechanism to controlling and licensing waste generation. This paper presents an explanation of property asset ‘regeneration reuse’ principles following deconstruction, which reduce waste generation associated with the process of demolition, construction and operation. An analysis is made of strategies in Australia and the United Kingdom, comparing jurisdiction targets pertaining to construction and demolition waste that encourage ‘regeneration reuse’. From examination of applicable Australian and United Kingdom legislation, strategic, fiscal and policy that influence on the 'regeneration reuse' of property assets, an evaluation to the variety of issues relevant to waste and resource management practices is reached. The paper concludes that a systematic evaluation framework to selecting building components and structures suitable for reuse after deconstruction must be considered in legislation.
Resumo:
Non-traditional maritime security concerns have become more importantthan ever in the post-Cold War era. Naval forces of most developedcountries are more concerned about these threats than conventional war.One of the main maritime security issues for many countries in the world isillegal, unreported and unregulated (IUU) fishing in the marine area. Withthese burgeoning issues comes the potential for a large number of disputesinvolving international law. In early 2002, a long-line fishing vessel under aRussian flag –the Volga, was detained by Australian authorities a few hundred meters outside the Exclusive Economic Zone of Australia’s Heard and McDonald Islands in the Southern Ocean. The vessel was reportedly engaged in illegal fishing. This incident gave birth to litigation in international and Australian courts. Apart from these cases, Russia also announced separate litigation against Australia for violation of Articles 111and 87 of the United Nations Convention on the Law of the Sea (NCLOS).Considering the outcome of these cases, this article critically examines thecharacteristics of litigation as a strategy for pacific settlement of disputesover marine living resources. Using the Volga Case as an example, thisarticle explores some issues related to the judicial settlement of disputes over marine living resources. This article demonstrates that the legal certainty of winning a case may not be the only factor influencing the strategy for settlement of an international dispute.
Resumo:
In this paper, we address the control design problem of positioning of over-actuated underwater vehicles. The proposed design is based on a control architecture with combined position and velocity loops and a control tuning method based on the decoupled models. We derive analytical tuning rules based on requirements of closed-loop stability, positioning performance, and the vehicle velocity dynamic characteristics. The vehicle modelling is considered from force to motion with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. This approach makes the control tuning independent of the characteristics of the force actuators and provides the basis for control reconfiguration in the presence of actuator failure. We propose an anti-wind-up implementation of the controller, which ensures that the constraints related to actuation capacity are not violated. This approach simplifies the control allocation problem since the actuator constraints are mapped into generalised force constraints.
Resumo:
The use of gyro-dynamic forces to counteract the wave-induced roll motion of marine vessels in a seaway was proposed over 100 years ago. These early systems showed a remarkable performance, reporting roll reductions of up to 95% in some sailing conditions. Despite this success, further developments were not pursued since the systems were unable to provide acceptable performance over an extended envelope of sailing and environmental conditions, and the invention of fin roll stabilisers provided a satisfactory alternative. This has been attributed to simplistic controls, heavy drive systems, and large structural mass required to withstand the loads given the low strength materials available at the time. Today, advances in material strength, bearings, motor technology and mechanical design methods, together with powerful signal processing algorithms, has resulted in a revitalized interest in gyro-stabilisers for ships. Advanced control systems have enabled optimisation of restoring torques across a range of wave environments and sailing conditions through adaptive control system design. All of these improvements have resulted in increased spinning speed, lower mass, and dramatically increased stabilising performance. This brief paper provides an overview of recent developments in the design and control of gyro-stabilisers of ship roll motion. In particular, the novel Halcyon Gyro-Stabilisers are introduced, and their performance is illustrated based on a simulation case study for a naval patrol vessel. Given the growing national and global interest in small combatants and patrol vessels, modem gyro-stabilisers may offer a significant technological contribution to the age old problem of comfort and mission operability on small ships, especially at loiter speeds.
Resumo:
One of the Department of Defense's most pressing environmental problems is the efficient detection and identification of unexploded ordnance (UXO). In regions of highly magnetic soils, magnetic and electromagnetic sensors often detect anomalies that are of geologic origin, adding significantly to remediation costs. In order to develop predictive models for magnetic susceptibility, it is crucial to understand modes of formation and the spatial distribution of different iron oxides. Most rock types contain iron and their magnetic susceptibility is determined by the amount and form of iron oxides present. When rocks weather, the amount and form of the oxides change, producing concomitant changes in magnetic susceptibility. The type of iron oxide found in the weathered rock or regolith is a function of the duration and intensity of weathering, as well as the original content of iron in the parent material. The rate of weathering is controlled by rainfall and temperature; thus knowing the climate zone, the amount of iron in the lithology and the age of the surface will help predict the amount and forms of iron oxide. We have compiled analyses of the types, amounts, and magnetic properties of iron oxides from soils over a wide climate range, from semi arid grasslands, to temperate regions, and tropical forests. We find there is a predictable range of iron oxide type and magnetic susceptibility according to the climate zone, the age of the soil and the amount of iron in the unweathered regolith.