953 resultados para Artificial Intelligence, Constraint Programming, set variables, representation
Resumo:
In the medical field images obtained from high definition cameras and other medical imaging systems are an integral part of medical diagnosis. The analysis of these images are usually performed by the physicians who sometimes need to spend long hours reviewing the images before they are able to come up with a diagnosis and then decide on the course of action. In this dissertation we present a framework for a computer-aided analysis of medical imagery via the use of an expert system. While this problem has been discussed before, we will consider a system based on mobile devices. Since the release of the iPhone on April 2003, the popularity of mobile devices has increased rapidly and our lives have become more reliant on them. This popularity and the ease of development of mobile applications has now made it possible to perform on these devices many of the image analyses that previously required a personal computer. All of this has opened the door to a whole new set of possibilities and freed the physicians from their reliance on their desktop machines. The approach proposed in this dissertation aims to capitalize on these new found opportunities by providing a framework for analysis of medical images that physicians can utilize from their mobile devices thus remove their reliance on desktop computers. We also provide an expert system to aid in the analysis and advice on the selection of medical procedure. Finally, we also allow for other mobile applications to be developed by providing a generic mobile application development framework that allows for access of other applications into the mobile domain. In this dissertation we outline our work leading towards development of the proposed methodology and the remaining work needed to find a solution to the problem. In order to make this difficult problem tractable, we divide the problem into three parts: the development user interface modeling language and tooling, the creation of a game development modeling language and tooling, and the development of a generic mobile application framework. In order to make this problem more manageable, we will narrow down the initial scope to the hair transplant, and glaucoma domains.
Resumo:
Nous avons développé un jeu sérieux afin d’enseigner aux utilisateurs à dessiner des diagrammes de Lewis. Nous l’avons augmenté d’un environnement pouvant enregistrer des signaux électroencéphalographiques, les expressions faciales, et la pupille d’un utilisateur. Le but de ce travail est de vérifier si l’environnement peut permettre au jeu de s’adapter en temps réel à l’utilisateur grâce à une détection automatique du besoin d’aide de l’utilisateur ainsi que si l’utilisateur est davantage satisfait de son expérience avec l’adaptation. Les résultats démontrent que le système d’adaptation peut détecter le besoin d’aide grâce à deux modèles d’apprentissage machine entraînés différemment, l’un généralisé et l’autre personalisé, avec des performances respectives de 53.4% et 67.5% par rapport à un niveau de chance de 33.3%.
Resumo:
Le but de ce travail est d’étudier la faisabilité de la détection de mouvements dans des séquences d’images en utilisant l’équation de continuité et la dynamique de supraconductivité. Notre approche peut être motivée par le fait que l’équation de continuité apparait dans plusieurs techniques qui estiment le flot optique. Un grand nombre de techniques qui utilisent les flots optiques utilisent une contrainte appelée contrainte de l’invariance lumineuse. La dynamique de supraconductivité nous permet de nous affranchir de la contrainte de l’invariance lumineuse. Les expériences se feront avec la base de données de séquences d’images CDNET 2014. Pour obtenir les résultats numériques en terme de score F1, une combinaison sera faite par la suite entre la dynamique de supraconductivité et un méchanisme d’attention qui est un résumé des vérites de terrain.
Resumo:
Data sources are often dispersed geographically in real life applications. Finding a knowledge model may require to join all the data sources and to run a machine learning algorithm on the joint set. We present an alternative based on a Multi Agent System (MAS): an agent mines one data source in order to extract a local theory (knowledge model) and then merges it with the previous MAS theory using a knowledge fusion technique. This way, we obtain a global theory that summarizes the distributed knowledge without spending resources and time in joining data sources. New experiments have been executed including statistical significance analysis. The results show that, as a result of knowledge fusion, the accuracy of initial theories is significantly improved as well as the accuracy of the monolithic solution.
Resumo:
Semantic relations are an important element in the construction of ontology-based linguistic resources and models of problem domains. Nevertheless, they remain under-specified. This is a pervasive problem in both Software Engineering and Artificial Intelligence. Thus, we find semantic links that can have multiple interpretations, abstractions that are not enough to represent the relation richness of problem domains, and even poorly structured taxonomies. However, if provided with precise semantics, some of these problems can be avoided, and meaningful operations can be performed on them that can be an aid in the ontology construction process. In this paper we present some insightful issues about the representation of relations. Moreover, the initiatives aiming to provide relations with clear semantics are explained and the inclusion of their core ideas as part of a methodology for the development of ontology-based linguistic resources is proposed.
Resumo:
Semantic relations are an important element in the construction of ontologies and models of problem domains. Nevertheless, they remain fuzzy or under-specified. This is a pervasive problem in software engineering and artificial intelligence. Thus, we find semantic links that can have multiple interpretations in wide-coverage ontologies, semantic data models with abstractions that are not enough to capture the relation richness of problem domains, and improperly structured taxonomies. However, if relations are provided with precise semantics, some of these problems can be avoided, and meaningful operations can be performed on them. In this paper we present some insightful issues about the modeling, representation and usage of relations including the available taxonomy structuring methodologies as well as the initiatives aiming to provide relations with precise semantics. Moreover, we explain and propose the control of relations as a key issue for the coherent construction of ontologies.
Resumo:
Resuscitation and stabilization are key issues in Intensive Care Burn Units and early survival predictions help to decide the best clinical action during these phases. Current survival scores of burns focus on clinical variables such as age or the body surface area. However, the evolution of other parameters (e.g. diuresis or fluid balance) during the first days is also valuable knowledge. In this work we suggest a methodology and we propose a Temporal Data Mining algorithm to estimate the survival condition from the patient’s evolution. Experiments conducted on 480 patients show the improvement of survival prediction.
Resumo:
The purpose of this work in progress study was to test the concept of recognising plants using images acquired by image sensors in a controlled noise-free environment. The presence of vegetation on railway trackbeds and embankments presents potential problems. Woody plants (e.g. Scots pine, Norway spruce and birch) often establish themselves on railway trackbeds. This may cause problems because legal herbicides are not effective in controlling them; this is particularly the case for conifers. Thus, if maintenance administrators knew the spatial position of plants along the railway system, it may be feasible to mechanically harvest them. Primary data were collected outdoors comprising around 700 leaves and conifer seedlings from 11 species. These were then photographed in a laboratory environment. In order to classify the species in the acquired image set, a machine learning approach known as Bag-of-Features (BoF) was chosen. Irrespective of the chosen type of feature extraction and classifier, the ability to classify a previously unseen plant correctly was greater than 85%. The maintenance planning of vegetation control could be improved if plants were recognised and localised. It may be feasible to mechanically harvest them (in particular, woody plants). In addition, listed endangered species growing on the trackbeds can be avoided. Both cases are likely to reduce the amount of herbicides, which often is in the interest of public opinion. Bearing in mind that natural objects like plants are often more heterogeneous within their own class rather than outside it, the results do indeed present a stable classification performance, which is a sound prerequisite in order to later take the next step to include a natural background. Where relevant, species can also be listed under the Endangered Species Act.
Resumo:
Se calculó la obtención de las constantes ópticas usando el método de Wolfe. Dichas contantes: coeficiente de absorción (α), índice de refracción (n) y espesor de una película delgada (d ), son de importancia en el proceso de caracterización óptica del material. Se realizó una comparación del método del Wolfe con el método empleado por R. Swanepoel. Se desarrolló un modelo de programación no lineal con restricciones, de manera que fue posible estimar las constantes ópticas de películas delgadas semiconductoras, a partir únicamente, de datos de transmisión conocidos. Se presentó una solución al modelo de programación no lineal para programación cuadrática. Se demostró la confiabilidad del método propuesto, obteniendo valores de α = 10378.34 cm−1, n = 2.4595, d =989.71 nm y Eg = 1.39 Ev, a través de experimentos numéricos con datos de medidas de transmitancia espectral en películas delgadas de Cu3BiS3.
Resumo:
Declarative techniques such as Constraint Programming can be very effective in modeling and assisting management decisions. We present a method for managing university classrooms which extends the previous design of a Constraint-Informed Information System to generate the timetables while dealing with spatial resource optimization issues. We seek to maximize space utilization along two dimensions: classroom use and occupancy rates. While we want to maximize the room use rate, we still need to satisfy the soft constraints which model students’ and lecturers’ preferences. We present a constraint logic programming-based local search method which relies on an evaluation function that combines room utilization and timetable soft preferences. Based on this, we developed a tool which we applied to the improvement of classroom allocation in a University. Comparing the results to the current timetables obtained without optimizing space utilization, the initial versions of our tool manages to reach a 30% improvement in space utilization, while preserving the quality of the timetable, both for students and lecturers.
Resumo:
Conceptual interpretation of languages has gathered peak interest in the world of artificial intelligence. The challenge in modeling various complications involved in a language is the main motivation behind our work. Our main focus in this work is to develop conceptual graphical representation for image captions. We have used discourse representation structure to gain semantic information which is further modeled into a graphical structure. The effectiveness of the model is evaluated by a caption based image retrieval system. The image retrieval is performed by computing subgraph based similarity measures. Best retrievals were given an average rating of . ± . out of 4 by a group of 25 human judges. The experiments were performed on a subset of the SBU Captioned Photo Dataset. This purpose of this work is to establish the cognitive sensibility of the approach to caption representations
Resumo:
Conceptual interpretation of languages has gathered peak interest in the world of artificial intelligence. The challenge in modeling various complications involved in a language is the main motivation behind our work. Our main focus in this work is to develop conceptual graphical representation for image captions. We have used discourse representation structure to gain semantic information which is further modeled into a graphical structure. The effectiveness of the model is evaluated by a caption based image retrieval system. The image retrieval is performed by computing subgraph based similarity measures. Best retrievals were given an average rating of . ± . out of 4 by a group of 25 human judges. The experiments were performed on a subset of the SBU Captioned Photo Dataset. This purpose of this work is to establish the cognitive sensibility of the approach to caption representations.
Resumo:
Combinatorial optimization problems are typically tackled by the branch-and-bound paradigm. We propose to learn a variable selection policy for branch-and-bound in mixed-integer linear programming, by imitation learning on a diversified variant of the strong branching expert rule. We encode states as bipartite graphs and parameterize the policy as a graph convolutional neural network. Experiments on a series of synthetic problems demonstrate that our approach produces policies that can improve upon expert-designed branching rules on large problems, and generalize to instances significantly larger than seen during training.
Resumo:
In this thesis we discuss in what ways computational logic (CL) and data science (DS) can jointly contribute to the management of knowledge within the scope of modern and future artificial intelligence (AI), and how technically-sound software technologies can be realised along the path. An agent-oriented mindset permeates the whole discussion, by stressing pivotal role of autonomous agents in exploiting both means to reach higher degrees of intelligence. Accordingly, the goals of this thesis are manifold. First, we elicit the analogies and differences among CL and DS, hence looking for possible synergies and complementarities along 4 major knowledge-related dimensions, namely representation, acquisition (a.k.a. learning), inference (a.k.a. reasoning), and explanation. In this regard, we propose a conceptual framework through which bridges these disciplines can be described and designed. We then survey the current state of the art of AI technologies, w.r.t. their capability to support bridging CL and DS in practice. After detecting lacks and opportunities, we propose the notion of logic ecosystem as the new conceptual, architectural, and technological solution supporting the incremental integration of symbolic and sub-symbolic AI. Finally, we discuss how our notion of logic ecosys- tem can be reified into actual software technology and extended towards many DS-related directions.
Resumo:
In the last decades, Artificial Intelligence has witnessed multiple breakthroughs in deep learning. In particular, purely data-driven approaches have opened to a wide variety of successful applications due to the large availability of data. Nonetheless, the integration of prior knowledge is still required to compensate for specific issues like lack of generalization from limited data, fairness, robustness, and biases. In this thesis, we analyze the methodology of integrating knowledge into deep learning models in the field of Natural Language Processing (NLP). We start by remarking on the importance of knowledge integration. We highlight the possible shortcomings of these approaches and investigate the implications of integrating unstructured textual knowledge. We introduce Unstructured Knowledge Integration (UKI) as the process of integrating unstructured knowledge into machine learning models. We discuss UKI in the field of NLP, where knowledge is represented in a natural language format. We identify UKI as a complex process comprised of multiple sub-processes, different knowledge types, and knowledge integration properties to guarantee. We remark on the challenges of integrating unstructured textual knowledge and bridge connections with well-known research areas in NLP. We provide a unified vision of structured knowledge extraction (KE) and UKI by identifying KE as a sub-process of UKI. We investigate some challenging scenarios where structured knowledge is not a feasible prior assumption and formulate each task from the point of view of UKI. We adopt simple yet effective neural architectures and discuss the challenges of such an approach. Finally, we identify KE as a form of symbolic representation. From this perspective, we remark on the need of defining sophisticated UKI processes to verify the validity of knowledge integration. To this end, we foresee frameworks capable of combining symbolic and sub-symbolic representations for learning as a solution.