Techniques for distributed theory synthesis in multiagent systems


Autoria(s): Gaya López, María Cruz; Giráldez Betrón, Juan Ignacio
Data(s)

09/07/2016

09/07/2016

2009

Resumo

Data sources are often dispersed geographically in real life applications. Finding a knowledge model may require to join all the data sources and to run a machine learning algorithm on the joint set. We present an alternative based on a Multi Agent System (MAS): an agent mines one data source in order to extract a local theory (knowledge model) and then merges it with the previous MAS theory using a knowledge fusion technique. This way, we obtain a global theory that summarizes the distributed knowledge without spending resources and time in joining data sources. New experiments have been executed including statistical significance analysis. The results show that, as a result of knowledge fusion, the accuracy of initial theories is significantly improved as well as the accuracy of the monolithic solution.

SIN FINANCIACIÓN

No data (2009)

UEM

Identificador

Gaya, M. C., & Giráldez, J. I. (2009). Techniques for distributed theory synthesis in multiagent systems. In International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008) (pp. 395-402). Berlin: Springer.

9783540858621

9783540858638

http://hdl.handle.net/11268/5387

Idioma(s)

eng

Publicador

Springer

Direitos

openAccess

Palavras-Chave #Sistemas multiagente #Motores de búsqueda #Informática
Tipo

conferenceObject