897 resultados para Gil González, Antonio
Resumo:
2.134 JCR (2015) Q3, 74/124 Medicine, research & experimental, 81/161 Biotechnology & applied microbiology
Resumo:
11 hojas.
Resumo:
p.83-91
Resumo:
p.201-206
Resumo:
En este documento abordamos la problemática de la evaluación de programas de formación inicial de profesores de matemáticas de secundaria desde la perspectiva de la calidad. Proponemos un significado para la calidad de un plan de formación a partir de tres dimensiones: relevancia, eficacia y eficiencia. Establecemos una relación entre estas dimensiones y la noción de indicadores de calidad. Ejemplificamos esta relación para el caso de la formación inicial de profesores de matemáticas de secundaria. Presentamos un modelo de formación que se viene utilizando en las universidades de Granada, Almería y Cantabria, y proponemos algunas cuestiones a partir de las cuales es posible formular proyectos de investigación que exploren y caractericen la calidad de planes de formación inicial de profesores de matemáticas de secundaria.
Resumo:
This study is part of the area of research in Psychology of Mathematics Education that investigates, among other things, knowledge relating to the formation of mathematical concepts. The objective was to investigate the conceptual knowledge of polygons of 76 high school students in terms of defining attributes and examples and non-examples. The instruments for collecting data was a test with two questions about polygons, defining attributes of a test and a test of examples and non-examples, based on the theory of Klausmeier and Goodwin (1977) on formation of concepts. The results showed that participants of the survey had difficulties in identifying defining attributes of polygons and non-discriminating examples of examples, showing the formation of this concept to the level of identity.
Resumo:
En este trabajo se plantea la necesidad de dar a conocer, en los últimos cursos de secundaria, contenidos sobre algunas problemas de tipo combinatorio, los modelos matemáticos correspondientes y, en su caso, algún método de resolución fácil de aplicar. La ilustración elegida para cumplir con este propósito es la de los problemas de planificación de proyectos, muy importantes en aplicaciones económicas, de organización y gestión, de las ingenierías, etc., y, por tanto, de mucho interés para motivar su estudio y resolución.
Resumo:
Se presenta una experiencia de investigación-acción colaborativa en fase de desarrollo que parte de la preocupación del profesorado de un colegio de Educación Primaria por mejorar su metodología en lo relativo al desarrollo del pensamiento numérico. El centro, que está ubicado en un barrio con alto riesgo de exclusión social, inició su transformación en Comunidad de Aprendizaje hace tres años. A grandes rasgos, la apuesta metodológica se basa en el aprendizaje significativo del Sistema de Numeración Decimal de la mano de unos materiales manipulativos concretos y la utilización de los denominados algoritmos Abiertos Basados en Números (ABN) para el cálculo. El proyecto, en el que participan los maestros y maestras del centro, profesorado de Didáctica de las Matemáticas, asesores de formación y alumnado universitario, pone en acción iniciativas de formación del profesorado, innovación en el aula e investigación educativa.
Resumo:
El objetivo de este estudio es determinar las dificultades que estudiantes de cuarto de ESO, de bachillerato y del Máster de Profesor de Educación Secundaria de la especialidad de Matemáticas tienen con la operatoria y el orden, cuando realizan cálculos con números decimales periódicos. El trabajo se sustenta en un estudio de Rittaud y Vivier, del cual se hace una réplica de una parte de su cuestionario que utilizamos para la toma de datos. El análisis de las respuestas de los estudiantes permite identificar errores y carencias en la enseñanza, conducentes a un esquema de clasificación e interpretación de las actuaciones de los estudiantes.
Resumo:
Presentamos resultados relativos a la equivalencia matemática y fenomenológica de la definición de límite finito de una sucesión y la definición de sucesión de Cauchy. Para ello enunciamos dos criterios que permiten determinar cuando dos fenómenos son equivalentes y cuando lo son dos definiciones, desde un punto de vista fenomenológico. A continuación y usando estos resultados realizamos avances significativos para demostrar en un futuro próximo que la definición de límite finito de una función en el infinito y la condición de Bolzano-Cauchy, además de ser equivalentes matemáticamente también lo son fenomenológicamente. Para ello enunciamos los fenómenos organizados por la definición de Bolzano-Cauchy que convenimos en llamarla definición de función de Cauchy.
Resumo:
En este documento indagamos sobre algunos aspectos del conocimiento didáctico que un grupo de maestros de primaria en formación inicial ponen en juego al redactar un texto cuyo propósito es iniciar a los escolares de primaria en la noción de fracción. Usamos algunas de las categorías del análisis didáctico para analizar las producciones de los futuros maestros. Los resultados destacan los conocimientos que los participantes seleccionan, como el concepto de numerador y denominador, la suma y resta de fracciones o el concepto de unidad, y el modo en que los introducen en sus propuestas.
Resumo:
Se estudia el proceso que va desde las acciones reales y efectivas de añadir y quitar hasta la construcción de las operaciones aritméticas de suma y resta por parte de los escolares de 3, 4 y 5 años. El esquema lógico-matemático subyacente es el de transformaciones. Para que se den estas operaciones deben presentarse simultáneamente dicho esquema y la cuantificación, siendo esa simultaneidad la que lleva a las relaciones numéricas. Teniendo en cuenta que el origen de las operaciones de suma y resta en el escolar está supeditado a las acciones de añadir y quitar que se desarrollan en un proceso de construcción mental de los esquemas lógicos-matemáticos de transformaciones de cantidades discretas, se propone un plan de actuación en el aula de educación infantil mediante un tratamiento sistemático de dichas operaciones.
Resumo:
En la investigación conducente a una tesis doctoral, estudiamos cómo reflexionan sobre su enseñanza, profesores de matemáticas, mientras participan en un curso de formación. La reflexión comienza seleccionando un problema profesional. Una de las parejas de profesores se planteó profundizar en las dificultades que tienen los alumnos para traducir enunciados a expresiones algebraicas (que los profesores llaman modelización). Para poder interpretar la reflexión hemos realizado un análisis didáctico de la enseñanza del álgebra en el inicio de secundaria. En esta comunicación presentamos algunas apreciaciones sobre el papel de la modelización en álgebra y su relación con los diferentes “roles de las letras en álgebra”, que nos servirán para interpretar los planteamientos y reflexiones de los profesores.
Resumo:
En esta comunicación se analizan dificultades y recursos que tienen los estudiantes para profesores de Educación Primaria y Secundaria al resolver problemas de Matemáticas, que se proponen como tareas y actividades básicas en un plan de formación inicial de Profesores de Matemáticas en la Educación Obligatoria, que facilitan el desarrollo de competencias profesionales útiles