996 resultados para Cassure double-brin
Resumo:
We study electron tunneling through a planar magnetic and electric barrier on the surface of a three-dimensional topological insulator. For the double barrier structures, we find (i) a directional-dependent tunneling which is sensitive to the magnetic field configuration and the electric gate voltage, (ii) a spin rotation controlled by the magnetic field and the gate voltage, (iii) many Fabry-Perot resonances in the transmission determined by the distance between the two barriers, and (iv) the electrostatic potential can enhance the difference in the transmission between the two magnetization configurations, and consequently lead to a giant magnetoresistance. Points (i), (iii), and (iv) are alike with that in graphene stemming from the same linear-dispersion relations.
Resumo:
Real-time detection of single electron tunneling through a T-shaped double quantum dot is simulated, based on a Monte Carlo scheme. The double dot is embedded in a dissipative environment and the presence of electrons on the double dot is detected with a nearby quantum point contact. We demonstrate directly the bunching behavior in electron transport, which leads eventually to a super-Poissonian noise. Particularly, in the context of full counting statistics, we investigate the essential difference between the dephasing mechanisms induced by the quantum point contact detection and the coupling to the external phonon bath. A number of intriguing noise features associated with various transport mechanisms are revealed.
Resumo:
20-period strained-layer superlattices of nominal composition and width Ge0.2Si0.8 (5 nm)/Si(25 nm) and Ge0.5Si0.5 (5 nm)/Si(25 nm) were studied by double-crystal X-ray diffraction. The Ge content x was determined by computer simulation of the diffraction features from the superlattice. This method is shown to be independent of the relaxation of the superlattice. Alternatively, x can be obtained from the measured difference DELTAa/a in lattice spacing perpendicular to the growth plane. It is sensitive to the relaxation. Comparing the results obtained in these two different ways, information about the relaxation of the superlattices can be obtained.
Resumo:
Taking the inhomogenous broadening of the electron energy levels into account, a coherent model of the resonant tunneling (RT) of electrons in double quantum wells is presented. The validity of the model is confirmed with the experiments [M. Nido et al., Proc. SPIE 1268, 177 (1990)], and shows that the tunneling process can be explained by the simple coherent theory even in the presence of the carrier scattering. We have discussed the dependence of resonant tunneling on the barrier thickness L(B) by introducing the contrast ratio LAMBDA and the full width at half depth of the RT valley, and found that LAMBDA first increases with increasing barrier thickness, reaches a maximum, and then decreases with a further increase of L(B), in striking contrast to the Fabry-Perot model where a monotonic increase of the peak-to-valley ratio is predicted. We attribute the reduction of LAMBDA with large L(B) to the energy broadening resulting from the carrier scattering. A monotonic decrease of the full width at half depth of the RT valley with an increase of L(R) is also found.
Resumo:
The magnetocapacitive response of a double-barrier structure (DBS), biased beyond resonances, has been employed to determine the density of states (DOS) of the two-dimensional electron gas residing in the accumulation layer on the incident side of the DBS. An adequate procedure is developed to compare the model calculation of the magnetocapacitance with the experimental C vs B curves measured at different temperatures and biases. The results show that the fitting is not only self-consistent but also remarkably good even in well-defined quantum Hall regimes. As a result, information about the DOS in strong magnetic fields could reliably be extracted.
Resumo:
By using a transfer-matrix method on the basis of two-dimensional (2D) Bloch sums in accordance with a tight-binding scheme, a self-consistent calculation on the resonant tunneling in asymmetric double-barrier structures is presented, in which contributions to resonant tunneling from both three-dimensional (3D) electrons in the contacts and 2D electrons in the spacer or accumulation layers are considered simultaneously. The charge buildup effect on the current versus voltage (I-V) curves is evaluated systematically, showing quantitatively how it results in the I-V bistability and enhanced differences between I-V curves for positive and negative bias in an asymmetric double-barrier structure. Special attention is focused on the interaction between 3D-2D and 2D-2D resonant-tunneling processes, including the suppression of 2D-2D resonant tunneling by the charge buildup in the well accompanying the 3D-2D resonant tunneling. The effects of the emitter doping condition (doping concentration, spacer thickness) on the presence of two types of quasi-2D levels in the emitter accumulation layers, and on the formation of a potential bulge in the emitter region, are discussed in detail in relation to the tunneling process.
Resumo:
Two samples of nominal 20-period Ge0.20Si0.80(5 nm)/Si(25 nm) and Ge0.5Si0.5(5 nm)/Si(25 nm) strained-layer superlattices (SLSs) were studied by the double-crystal X-ray diffraction method. It is convenient to define the perpendicular strains relative to the average crystal. Computer simulations of the rocking curves were performed using a kinematical step model. An excellent agreement between the measured and simulated satellite patterns is achieved. The dependence of the sensitivity of the rocking curves to the structural parameters of the SLS, such as the alloying concentration x and the layer thicknesses and the L component of the reflection g = (HKL), are clearly demonstrated.
Resumo:
Nonresonant electron tunneling between asymmetric double quantum wells in AlxGa1-xAs/GaAs systems has been investigated by using steady-state and time-resolved photoluminescence spectra. Experimental evidence of LO-phonon-assisted tunneling through thick barriers has been obtained by enhancing excitation power densities or applying electric fields perpendicular to the well plane. LO-phonon-assisted tunneling times have also been estimated from the variation of the decay time of the narrow-well photoluminescence with applied electric fields. Our findings suggest that LO phonons in the barriers play an important role in the tunneling transfer.
Resumo:
A scattering process modeled by an imaginary potential V(I) in the wide well of an asymmetric double quantum well structure (DQWS) is used to model the electron tunneling from the narrow well. Taking V(I) approximately -5 meV, the ground resonant level lifetimes of the narrow well in the DQWS are in quantitative agreement with the experimental resonance and non-resonance tunneling times. The corresponding scattering time 66 fs is much faster than the intersubband scattering time of LO-photon emission.
Resumo:
GaAs epilayer films on Si substrates grown by molecular-beam epitaxy were investigated by the x-ray double-crystal diffraction method. The rocking curves were recorded for different diffraction vectors of samples. The results show that the unit-cell volumes of GaAs epilayers are smaller than that of the GaAs bulk material. The strained-layer superlattice buffer layer can improve the quality of the film, especially in the surface lamella. The parameter W' = W(expt)/(square-root \gamma-h\/gamma-0/sin 2-theta-B) is introduced to describe the quality of different depths of epilayers. As the x-ray incident angle is increased, W' also increases, that is, the quality of the film deteriorates with increasing penetration distance of the x-ray beam. Therefore, W' can be considered as a parameter that describes the degree of perfection of the epilayer along the depth below the surface. The cross-section transmission electron microscopy observations agree with the results of x-ray double-crystal diffraction.