927 resultados para asymptotically almost periodic functions
Resumo:
We prove the existence of infinitely many symmetric periodic orbits for a regularized rhomboidal five-body problem with four small masses placed at the vertices of a rhombus centered in the fifth mass. The main tool for proving the existence of such periodic orbits is the analytic continuation method of Poincaré together with the symmetries of the problem. © 2006 American Institute of Physics.
Resumo:
In this paper we will find a continuous of periodic orbits passing near infinity for a class of polynomial vector fields in R3. We consider polynomial vector fields that are invariant under a symmetry with respect to a plane and that possess a “generalized heteroclinic loop” formed by two singular points e+ and e− at infinity and their invariant manifolds � and . � is an invariant manifold of dimension 1 formed by an orbit going from e− to e+, � is contained in R3 and is transversal to . is an invariant manifold of dimension 2 at infinity. In fact, is the 2–dimensional sphere at infinity in the Poincar´e compactification minus the singular points e+ and e−. The main tool for proving the existence of such periodic orbits is the construction of a Poincar´e map along the generalized heteroclinic loop together with the symmetry with respect to .
Resumo:
For polynomial vector fields in R3, in general, it is very difficult to detect the existence of an open set of periodic orbits in their phase portraits. Here, we characterize a class of polynomial vector fields of arbitrary even degree having an open set of periodic orbits. The main two tools for proving this result are, first, the existence in the phase portrait of a symmetry with respect to a plane and, second, the existence of two symmetric heteroclinic loops.
Resumo:
In this paper we consider C1 vector fields X in R3 having a “generalized heteroclinic loop” L which is topologically homeomorphic to the union of a 2–dimensional sphere S2 and a diameter connecting the north with the south pole. The north pole is an attractor on S2 and a repeller on . The equator of the sphere is a periodic orbit unstable in the north hemisphere and stable in the south one. The full space is topologically homeomorphic to the closed ball having as boundary the sphere S2. We also assume that the flow of X is invariant under a topological straight line symmetry on the equator plane of the ball. For each n ∈ N, by means of a convenient Poincar´e map, we prove the existence of infinitely many symmetric periodic orbits of X near L that gives n turns around L in a period. We also exhibit a class of polynomial vector fields of degree 4 in R3 satisfying this dynamics.
Resumo:
In this paper we consider vector fields in R3 that are invariant under a suitable symmetry and that posses a “generalized heteroclinic loop” L formed by two singular points (e+ and e −) and their invariant manifolds: one of dimension 2 (a sphere minus the points e+ and e −) and one of dimension 1 (the open diameter of the sphere having endpoints e+ and e −). In particular, we analyze the dynamics of the vector field near the heteroclinic loop L by means of a convenient Poincar´e map, and we prove the existence of infinitely many symmetric periodic orbits near L. We also study two families of vector fields satisfying this dynamics. The first one is a class of quadratic polynomial vector fields in R3, and the second one is the charged rhomboidal four body problem.
Resumo:
We characterize the weighted Hardy inequalities for monotone functions in Rn +. In dimension n = 1, this recovers the standard theory of Bp weights. For n > 1, the result was previously only known for the case p = 1. In fact, our main theorem is proved in the more general setting of partly ordered measure spaces.
Resumo:
RAPPORT DE SYNTHÈSE : Les profils des granules cytotoxiques des cellules T CD8 mémoires sont corrélés à la fonction, à leur état de différentiation et à l'exposition à l'antigène. Les lymphocytes T-CD8 cytotoxiques exercent leur fonction antivirale et antitumorale surtout par la sécrétion des granules cytotoxiques. En général, ce sont l'activité de dégranulation et les granules cytotoxiques (contenant perforine et différentes granzymes) qui définissent les lymphocytes T-CD8 cytotoxiques. Dans cette étude, nous avons investigué l'expression de granzyme K par cytométrie en flux, en comparaison avec l'expression de granzyme A, granzyme B et de perforine. L'expression des granules cytotoxiques a été déterminée dans lymphocytes T-CD8 qui étaient spécifiques pour des différents virus, en particulier spécifique pour le virus d'influenza (flu), le virus Ebstein Barr (EBV), le virus de cytomégalie (CMV) et le virus de l'immunodéficience humaine (HIV). Nous avons observé une dichotomie entre l'expression du granzyme K et de la perforine dans les lymphocytes T-CD8 qui étaient spécifiques aux virus mentionnés. Les profils des lymphocytes T-CD8 spécifiques à flu étaient positifs soit pour granzyme A et granzyme K soit pour le granzyme K seul, mais dans l'ensemble négatifs pour perforine et granzyme B. Les cellules spécifiques à CMV étaient dans la plupart positives pour perforine, granzyme B et A, mais négatives pour le granzyme K. Les cellules spécifiques à EBV et HIV étaient dans la majorité positives pour granzyme A, B et K, et dans la moitié des cas négatives pour la perforine. Nous avons également analysé, selon les marqueurs de mémoire de CD45 et CD127, les profils de différentiation cellulaire: Les cellules avec les granules cytotoxiques contenant exclusivement le granzyme K, étaient associées à un état de différentiation précoce. Au contraire, les protéines cytolytiques perforine, granzyme A et B, correspondent à une différentiation avancée. En outre, les protéines perforine et granzyme B, mais pas les granzymes A et K, sont corrélées à une activité cytotoxique. Finalement, des changements dans l'exposition d'antigène in vitro et in vivo suivant une infection primaire d' HIV ou une vaccination modulent le profil de granules cytotoxiques. Ces résultats nous permettent d'étendre la compréhension de la relation entre les différents profils de granules cytotoxiques des lymphocytes T-CD8 et leur fonction, leur état de différentiation et l'exposition à l'antigène.
Resumo:
Contingut del Pòster presentat al congrés New Trends in Dynamical Systems
Resumo:
Consider the celebrated Lyness recurrence $x_{n+2}=(a+x_{n+1})/x_{n}$ with $a\in\Q$. First we prove that there exist initial conditions and values of $a$ for which it generates periodic sequences of rational numbers with prime periods $1,2,3,5,6,7,8,9,10$ or $12$ and that these are the only periods that rational sequences $\{x_n\}_n$ can have. It is known that if we restrict our attention to positive rational values of $a$ and positive rational initial conditions the only possible periods are $1,5$ and $9$. Moreover 1-periodic and 5-periodic sequences are easily obtained. We prove that for infinitely many positive values of $a,$ positive 9-period rational sequences occur. This last result is our main contribution and answers an open question left in previous works of Bastien \& Rogalski and Zeeman. We also prove that the level sets of the invariant associated to the Lyness map is a two-parameter family of elliptic curves that is a universal family of the elliptic curves with a point of order $n, n\ge5,$ including $n$ infinity. This fact implies that the Lyness map is a universal normal form for most birrational maps on elliptic curves.
Resumo:
This paper studies non-autonomous Lyness type recurrences of the form x_{n+2}=(a_n+x_n)/x_{n+1}, where a_n is a k-periodic sequence of positive numbers with prime period k. We show that for the cases k in {1,2,3,6} the behavior of the sequence x_n is simple(integrable) while for the remaining cases satisfying k not a multiple of 5 this behavior can be much more complicated(chaotic). The cases k multiple of 5 are studied separately.
Resumo:
This paper studies non-autonomous Lyness type recurrences of the form xn+2 = (an+xn+1)=xn, where fang is a k-periodic sequence of positive numbers with primitive period k. We show that for the cases k 2 f1; 2; 3; 6g the behavior of the sequence fxng is simple (integrable) while for the remaining cases satisfying this behavior can be much more complicated (chaotic). We also show that the cases where k is a multiple of 5 present some di erent features.
Resumo:
The peroxisome proliferator-activated receptors (PPARs) are fatty acid and eicosanoid inducible nuclear receptors, which occur in three different isotypes. Upon activator binding, they modulate the expression of various target genes implicated in several important physiological pathways. During the past few years, the identification of both PPAR ligands, natural and synthetic, and PPAR targets and their associated functions has been one of the most important achievements in the field. It underscores the potential therapeutic application of PPAR-specific compounds on the one side, and the crucial biological roles of endogenous PPAR ligands on the other.