972 resultados para Planar vector field
Resumo:
This paper illustrates a field research performed with a team of experts involved in the evaluation of Trippple, a system aimed at supporting the different phases of a tourist trip, in order to provide feedback and insights, both on the functionalities already implemented (that at the time of evaluation were available only as early and very unstable prototypes), and on the functionalities still to be implemented. We show how the involvement of professionals helped to focus on challenging aspects, instead of less important, cosmetic, issues and resulted profitable in terms of early feedback, issues spotted, and improvements suggested
Resumo:
The problem of MHD natural convection boundary layer flow of an electrically conducting and optically dense gray viscous fluid along a heated vertical plate is analyzed in the presence of strong cross magnetic field with radiative heat transfer. In the analysis radiative heat flux is considered by adopting optically thick radiation limit. Attempt is made to obtain the solutions valid for liquid metals by taking Pr≪1. Boundary layer equations are transformed in to a convenient dimensionless form by using stream function formulation (SFF) and primitive variable formulation (PVF). Non-similar equations obtained from SFF are then simulated by implicit finite difference (Keller-box) method whereas parabolic partial differential equations obtained from PVF are integrated numerically by hiring direct finite difference method over the entire range of local Hartmann parameter, $xi$ . Further, asymptotic solutions are also obtained for large and small values of local Hartmann parameter $xi$ . A favorable agreement is found between the results for small, large and all values of $xi$ . Numerical results are also demonstrated graphically by showing the effect of various physical parameters on shear stress, rate of heat transfer, velocity and temperature.
Resumo:
This paper analyses effects of winding structure on capacitive coupling reduction appearing in the planar magnetic elements at high frequencies. Capacitive coupling appears between the conductive layers of the planar transformers resulting in high current spikes and consequently high power dissipation. With finite element analysis, the equivalent capacitive coupling of magnetic elements is calculated for different structures of planar windings. Finally, a new winding structure with minimum capacitive coupling is introduced for the planar magnetic elements, which is verified by simulation and experiments.
Resumo:
In 1980 Alltop produced a family of cubic phase sequences that nearly meet the Welch bound for maximum non-peak correlation magnitude. This family of sequences were shown by Wooters and Fields to be useful for quantum state tomography. Alltop’s construction used a function that is not planar, but whose difference function is planar. In this paper we show that Alltop type functions cannot exist in fields of characteristic 3 and that for a known class of planar functions, x^3 is the only Alltop type function.
Resumo:
For the timber industry, the ability to simulate the drying of wood is invaluable for manufacturing high quality wood products. Mathematically, however, modelling the drying of a wet porous material, such as wood, is a diffcult task due to its heterogeneous and anisotropic nature, and the complex geometry of the underlying pore structure. The well{ developed macroscopic modelling approach involves writing down classical conservation equations at a length scale where physical quantities (e.g., porosity) can be interpreted as averaged values over a small volume (typically containing hundreds or thousands of pores). This averaging procedure produces balance equations that resemble those of a continuum with the exception that effective coeffcients appear in their deffnitions. Exponential integrators are numerical schemes for initial value problems involving a system of ordinary differential equations. These methods differ from popular Newton{Krylov implicit methods (i.e., those based on the backward differentiation formulae (BDF)) in that they do not require the solution of a system of nonlinear equations at each time step but rather they require computation of matrix{vector products involving the exponential of the Jacobian matrix. Although originally appearing in the 1960s, exponential integrators have recently experienced a resurgence in interest due to a greater undertaking of research in Krylov subspace methods for matrix function approximation. One of the simplest examples of an exponential integrator is the exponential Euler method (EEM), which requires, at each time step, approximation of φ(A)b, where φ(z) = (ez - 1)/z, A E Rnxn and b E Rn. For drying in porous media, the most comprehensive macroscopic formulation is TransPore [Perre and Turner, Chem. Eng. J., 86: 117-131, 2002], which features three coupled, nonlinear partial differential equations. The focus of the first part of this thesis is the use of the exponential Euler method (EEM) for performing the time integration of the macroscopic set of equations featured in TransPore. In particular, a new variable{ stepsize algorithm for EEM is presented within a Krylov subspace framework, which allows control of the error during the integration process. The performance of the new algorithm highlights the great potential of exponential integrators not only for drying applications but across all disciplines of transport phenomena. For example, when applied to well{ known benchmark problems involving single{phase liquid ow in heterogeneous soils, the proposed algorithm requires half the number of function evaluations than that required for an equivalent (sophisticated) Newton{Krylov BDF implementation. Furthermore for all drying configurations tested, the new algorithm always produces, in less computational time, a solution of higher accuracy than the existing backward Euler module featured in TransPore. Some new results relating to Krylov subspace approximation of '(A)b are also developed in this thesis. Most notably, an alternative derivation of the approximation error estimate of Hochbruck, Lubich and Selhofer [SIAM J. Sci. Comput., 19(5): 1552{1574, 1998] is provided, which reveals why it performs well in the error control procedure. Two of the main drawbacks of the macroscopic approach outlined above include the effective coefficients must be supplied to the model, and it fails for some drying configurations, where typical dual{scale mechanisms occur. In the second part of this thesis, a new dual{scale approach for simulating wood drying is proposed that couples the porous medium (macroscale) with the underlying pore structure (microscale). The proposed model is applied to the convective drying of softwood at low temperatures and is valid in the so{called hygroscopic range, where hygroscopically held liquid water is present in the solid phase and water exits only as vapour in the pores. Coupling between scales is achieved by imposing the macroscopic gradient on the microscopic field using suitably defined periodic boundary conditions, which allows the macroscopic ux to be defined as an average of the microscopic ux over the unit cell. This formulation provides a first step for moving from the macroscopic formulation featured in TransPore to a comprehensive dual{scale formulation capable of addressing any drying configuration. Simulation results reported for a sample of spruce highlight the potential and flexibility of the new dual{scale approach. In particular, for a given unit cell configuration it is not necessary to supply the effective coefficients prior to each simulation.
Resumo:
utomatic pain monitoring has the potential to greatly improve patient diagnosis and outcomes by providing a continuous objective measure. One of the most promising methods is to do this via automatically detecting facial expressions. However, current approaches have failed due to their inability to: 1) integrate the rigid and non-rigid head motion into a single feature representation, and 2) incorporate the salient temporal patterns into the classification stage. In this paper, we tackle the first problem by developing a “histogram of facial action units” representation using Active Appearance Model (AAM) face features, and then utilize a Hidden Conditional Random Field (HCRF) to overcome the second issue. We show that both of these methods improve the performance on the task of pain detection in sequence level compared to current state-of-the-art-methods on the UNBC-McMaster Shoulder Pain Archive.
Resumo:
This study explores the impact of field experience in Australian primary classrooms on the developing professional identities of Malaysian pre-service teachers. This group of 24 Malaysian students are undertaking their Bachelor of Education in Teaching English as a Foreign Language (BEd TESL) at an Australian university, as part of a transnational twinning program. The globalisation of education has seen an increase in such transnational school experiences for pre-service teachers, with the aim of extending professional experience and intercultural competence by engaging in communities of practice beyond the local (Tsui 2005, Luke 2004). Despite overseas governments, such as Malaysia, having sponsored multimillion dollar twinning programs for their pre-service teachers, there is a lack of research regarding the outcomes of transnational professional practice within such programs. This study adopts a qualitative approach focusing on participants’ narratives as revealed in their reflective writing and through semi-structured interviews. Adopting a Bakhtinian framework, this research uses the concept of ‘voice’ to explore how pre-service teachers negotiate their identities as EFL teachers in response to their lived professional experiences (Bakhtin 1981, 1986). Encountering different cultural and educational practices in their transnational field experiences can lead pre-service teachers to question taken-for-granted practices that they have grown up with. This has been described as a process of making the familiar strange, and can lead to a shift in professional understandings. This study investigates how such questioning occurs and how the transnational field experience is perceived by the participants as contributing to their developing professional identities.
Resumo:
Opening up a band gap and finding a suitable substrate material are two big challenges for building graphene-based nanodevices. Using state-of-the-art hybrid density functional theory incorporating long range dispersion corrections, we investigate the interface between optically active graphitic carbon nitride (g-C3N4) and electronically active graphene. We find an inhomogeneous planar substrate (g-C3N4) promotes electronrich and hole-rich regions, i.e., forming a well-defined electron−hole puddle, on the supported graphene layer. The composite displays significant charge transfer from graphene to the g-C3N4 substrate, which alters the electronic properties of both components. In particular, the strong electronic coupling at the graphene/g-C3N4 interface opens a 70 meV gap in g-C3N4-supported graphene, a feature that can potentially allow overcoming the graphene’s band gap hurdle in constructing field effect transistors. Additionally, the 2-D planar structure of g-C3N4 is free of dangling bonds, providing an ideal substrate for graphene to sit on. Furthermore, when compared to a pure g-C3N4 monolayer, the hybrid graphene/g-C3N4 complex displays an enhanced optical absorption in the visible region, a promising feature for novel photovoltaic and photocatalytic applications.
Resumo:
Two different morphologies of nanotextured molybdenum oxide were deposited by thermal evaporation. By measuring their field emission (FE) properties, an enhancement factor was extracted. Subsequently, these films were coated with a thin layer of Pt to form Schottky contacts. The current-voltage (I-V) characteristics showed low magnitude reverse breakdown voltages, which we attributed to the localized electric field enhancement. An enhancement factor was obtained from the I-V curves. We will show that the enhancement factor extracted from the I-V curves is in good agreement with the enhancement factor extracted from the FE measurements.
Resumo:
This paper investigates advanced channel compensation techniques for the purpose of improving i-vector speaker verification performance in the presence of high intersession variability using the NIST 2008 and 2010 SRE corpora. The performance of four channel compensation techniques: (a) weighted maximum margin criterion (WMMC), (b) source-normalized WMMC (SN-WMMC), (c) weighted linear discriminant analysis (WLDA), and; (d) source-normalized WLDA (SN-WLDA) have been investigated. We show that, by extracting the discriminatory information between pairs of speakers as well as capturing the source variation information in the development i-vector space, the SN-WLDA based cosine similarity scoring (CSS) i-vector system is shown to provide over 20% improvement in EER for NIST 2008 interview and microphone verification and over 10% improvement in EER for NIST 2008 telephone verification, when compared to SN-LDA based CSS i-vector system. Further, score-level fusion techniques are analyzed to combine the best channel compensation approaches, to provide over 8% improvement in DCF over the best single approach, (SN-WLDA), for NIST 2008 interview/ telephone enrolment-verification condition. Finally, we demonstrate that the improvements found in the context of CSS also generalize to state-of-the-art GPLDA with up to 14% relative improvement in EER for NIST SRE 2010 interview and microphone verification and over 7% relative improvement in EER for NIST SRE 2010 telephone verification.
Resumo:
It is often suggested that there is a psychological advantage to be leading in a competition. It is, however, hard to identify such an effect econometrically. Using a Regression Discontinuity Design over a large dataset of tennis matches (N=634,095) the present paper exploits the randomised variation in first set results that occurs when the first set is decided by a close tie break (N=72,294). I find that winning the first set has a significant and strong effect on the result of the second set. A player who wins a close first set tie break will, on average, win one game more in the second set. I discuss the likely economic and psychological explanations of this phenomenon.
Resumo:
The concept of market-driven rather than product-driven quality management has been given prominence through the report of a recent inquiry into the performance of the Hong Kong construction industry. The report submitted to the Government of Hong Kong in 2001 establishes a new vision of ‘an integrated industry that is capable of continuous improvement towards excellence in the market-driven environment’. Given the current economic downturn, major contractors are facing many challenges to realize this new quality oriented vision. This paper addresses the critical and timely issue of applying quality management to the project delivery process in Hong Kong. The paper attempts to capture and critically examine management perceptions of quality management aspects as applied to a local large-scale road construction project. Based on the analysis of questionnaire feedback and face-to-face interviews, the paper reveals key attributes of a successful application of quality management approaches, and identifies a mechanism for facilitating such implementation.
Resumo:
Field-effect transistors (FETs) fabricated from undoped and Co2+-doped CdSe colloidal nanowires show typical n-channel transistor behaviour with gate effect. Exposed to microscope light, a 10 times current enhancement is observed in the doped nanowire-based devices due to the significant modification of the electronic structure of CdSe nanowires induced by Co2+-doping, which is revealed by theoretical calculations from spin-polarized plane-wave density functional theory.