911 resultados para Ion current density


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A short wavelength (lambda similar or equal to 3.5 mu m) strain-compensated InxGa(1-x)As/InyAl(1-y)As quantum cascade laser is reported. Quasi-continuous wave operation of this device at 34 degrees C with an output power of 11.4mW persisted for more than 30 minutes without obvious degradation. A very low threshold current density of 1.2KA/cm(2) at this temperature was observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Systematic study of molecular beam epitaxy-grown self-assembled In(Ga)As/GaAs, In-AlAs/AlGaAs/GaAs, and InAs/InAlAs/InP quantum dots (QDs) is demonstrated. By adjusting growth conditions, surprising alignment, preferential elongation, and pronounced sequential coalescence of dots under the specific condition are realized. Room-temperature (RT) continuous-wave (CW) lasing at the wavelength of 960 nm with output power of 1 W is achieved from vertical coupled InAs/GaAs QDs ensemble. The RT threshold current density is 218 A/cm(2). An RT CW output power of 0.53 W ensures at least 3 000 h lasing (only drops 0.83 db). This is one of the best results ever reported.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on a Si1-xGex/Si multiple quantum-well resonant-cavity-enhanced (RCE) photodetector with a silicon-on-oxide reflector as the bottom mirror operating near 1.3 mu m. The breakdown voltage of the photodetector is above 18 V and the dark current density at 5 V reverse bias is 12 pA/mu m(2). The RCE photodetector shows enhanced responsivity with a clear peak at 1.285 mu m and the peak responsivity is measured around 10.2 mA/W at a reverse bias of 5 V. The external quantum efficiency at 1.3 mu m is measured to be 3.5% under reverse bias of 16 V, which is enhanced three- to fourfold compared with that of a conventional p-i-n photodetector with a Ge content of 0.5 reported in 1995 by Huang [Appl. Phys. Lett. 67, 566 (1995)]. (C) 2000 American Institute of Physics. [S0003-6951(00)00628-8].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we reported on the fabrication of 980 nm InGaAs/InGaAsP strained quantum-well (QW) lasers with broad waveguide. The laser structure was grown by low-pressure metalorganic chemical vapor deposition on a n(+)- GaAs substrate. For 3 mu m stripe ridge waveguide lasers, the threshold current is 30 mA and the maximum output power and the output power operating in fundamental mode are 350 mW and 200 mW, respectively. The output power from the single mode fiber is up to 100 mW, the coupling efficiency is 50%. We also fabricated 100 mu m broad stripe coated lasers with cavity length of 800 mu m, a threshold current density of 170 A/cm(2), a high slope efficiency of 1.03 W/A and a far-field pattern of 40 x 6 degrees are obtained. The maximum output power of 3.5 W is also obtained for 100 mu m wide coated lasers. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the material growth and fabrication of high-performance 980-nm strained quantum-well lasers employing a hybrid material system consisting of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in flexibility of laser design, simple epitaxial growth, and improvement of surface morphology and laser performance. The as-grown InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.95 eV) lasers achieve a low threshold current density of 150 A/cm(2) (at a cavity length of 1500 mu m), internal quantum efficiency of similar to 95%, and low internal loss of 1.8 cm(-1). Both broad-area and ridge-waveguide laser devices are fabricated. For 100-mu m-wide stripe lasers with a cavity length of 800 Irm, a slope efficiency of 1.05 W/A and a characteristic temperature coefficient (T-0) of 230 K are achieved. The lifetime test demonstrates a reliable performance. The comparison with our fabricated InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.87 eV) lasers and Al-free InGaAs-InGaAsP (1.6 eV)-InGaP lasers are also given and discussed. The selective etching between AlGaAs and InGaAsP is successfully used for the formation of a ridge-waveguide structure. For 4-mu m-wide ridge-waveguide laser devices, a maximum output power of 350 mW is achieved. The fundamental mode output power can be up to 190 mW with a slope efficiency as high as 0.94 W/A.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

650 nm-range AlGaInP multi-quantum well (MQW) laser diodes grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) have been studied and the results are presented in this paper. Threshold current density of broad area contact laser diodes can be as low as 350 A/cm(2). Laser diodes with buried-ridge strip waveguide structures were made, threshold currents and differential efficiencies are (22-40) mA and (0.2-0.7) mW/mA, respectively. Typical output power for the laser diodes is 5 mW, maximum output power of 15 mW has been obtained. Their operation temperature can be up to 90 degrees C under power of 5 mW. After operating under 90 degrees C and 5 mW for 72 hrs, the average increments for the threshold currents of the lasers at 25 degrees C and the operation currents at 5 mW (at 25 degrees C) are (2-3) mA and (3-5) mA, respectively. Reliability tests showed that no obvious degradation was observed after 1400 hours of CW operation under 50 degrees C and 2.5 mW.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When liquid phase epitaxy regrowth at 780 degrees C for 2 h is applied to the samples after molecular beam epitaxy, a decrease of the threshold current density in strained InGaAs/GaAs quantum well lasers by a factor of 3 to 4 is obtained. We suggest that this improvement is attributed to the reduction of nonradiative centers associated with deep levels at the three regions of the active region, the graded layer and the cladding layer. Indeed, a significant reduction of deep center densities has been observed by using minority and majority carrier injection deep level transient spectroscopy measurements. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A theoretical study of modal gain in p-doped 1.3 mu m InAs/GaAs quantum dot (QD) lasers is presented. The expression of modal gain is derived, which includes an effective ratio that describes how many QDs contribute to the modal gain. The calculated results indicate that the modal gain with the effective ratio is much smaller than that without the effective ratio. The calculated maximum modal gain is is a good agreement with the experimental data. Furthermore, QDs with lower height or smaller aspect ratio are beneficial in achieving a larger maximum modal gain that leads to lower threshold current density and higher differential modal gain. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AlGaN/AlN/GaN/InGaN/GaN double heterojunction high electron mobility transistors (DH-HEMTs) structures with improved buffer isolation have been investigated. The structures were grown by MOCVD on sapphire substrate. AFM result of this structure shows a good surface morphology with the root-mean-square roughness (RMS) of 0.196 nm for a scan area of 5 mu mx5 mu m. A mobility as high as 1950 cm(2)/Vs with the sheet carrier density of 9.89x10(12) cm(-2) was obtained, which was about 50% higher than other results of similar structures which have been reported. Average sheet resistance of 327 Omega/sq was achieved. The HEMTs device using the materials was fabricated, and a maximum drain current density of 718.5 mA/mm, an extrinsic transconductance of 248 mS/mm, a current gain cutoff frequency of 16 GHz and a maximum frequency of oscillation 35 GHz were achieved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of 1.25 kA/cm(2) only by utilizing the light emission from the ground state of QDs. This large tunable range only covers the QD ground-state emission and is related to the inhomogeneous size distribution of QDs. No excited state contributes to the tuning bandwidth. The application of the QD gain device to the external cavity tunable laser shows its immense potential in broadening the tuning bandwidth. By the external cavity feedback, the threshold current density can be reduced remarkably compared with the free-running QD gain device.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tandem organic light-emitting diodes (OLEDs) with an effective charge-generation connection structure of Mg-doped tris(8-hydroxyquinoline) aluminum (Alq(3))/Molybdenum oxide (MoO3)-doped 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) were presented. At a current density of 50 mA/cm(2), the current efficiency of the tandem OLED with two standard NPB/Alq(3) emitting units is 4.2 cd/A, which is 1.7 times greater than that of the single EL device. The tandem OLED with the similar connection structure of Mg-doped PTCDA/MoO3-doped PTCDA was also fabricated and the influences of the different connection units on the current efficiency of the tandem OLED were discussed as well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A 1.55-mu m hybrid InGaAsP-Si laser was fabricated by the selective-area metal bonding method. Two Si blocking stripes, each with an excess-metals accommodated space, were used to separate the optical coupling area and the metal bonding areas. In such a structure, the air gap between the InGaAsP structure and Si waveguide has been reduced to be negligible. The laser operates with a threshold current density of 1.7 kA/cm(2) and a slope efficiency of 0.05 W/A under pulsed-wave operation. Room-temperature continuous lasing with a maximum output power of 0.45 mW is realized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

808 nm high-power laser diodes are gown by MBE. In the laser structure, the combination of Si-doped GRIN (graded-index) region adjacent to n-AlGaAs cladding layer with reduced Be doping concentration near the active region has been used to diminish Be diffusion and oxygen incorporation. As compared with the laser structure which has undoped GRIN region and uniform doping concentration for Si and Be, respectively, in the cladding layers, the slope efficiency has increased by about 8%. Typical threshold current density of 300 A/cm(2) and the minimum threshold current density of 220 A/cm(2) for lasers with 500 mu m cavity length are obtained. A high slope efficiency of 1.3 W/A for coated lasers with 1000 mu m cavity length is also demonstrated, Recorded CW output power at room temperature has reached 2.3 W.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The valence hole subbands, TE and TM mode optical gains, transparency carrier density, and radiative current density of the zinc-blende GaN/Ga0.85Al0.15N strained quantum well (100 Angstrom well width) have been investigated using a 6 X 6 Hamiltonian model including the heavy hole, Light hole, and spin-orbit split-off bands. At the k = 0 point, it is found that the light hole strongly couples with the spin-orbit split-off hole, resulting in the so+lh hybrid states. The heavy hole does not couple with the light hole and the spin-orbit split-off hole. Optical transitions between the valence subbands and the conduction subbands obey the Delta n=0 selection rule. At the k not equal 0 points, there is strong band mixing among the heavy hole, light hole, and spin-orbit split-off hole. The optical transitions do not obey the Delta n=0 selection rule. The compressive strain in the GaN well region increases the energy separation between the so1+lh1 energy level and the hh1 energy level. Consequently, the compressive strain enhances the TE mode optical gain, and strongly depresses the TM mode optical gain. Even when the carrier density is as large as 10(19) cm(-3), there is no positive TM mode optical gain. The TE mode optical gain spectrum has a peak at around 3.26 eV. The transparency carrier density is 6.5 X 10(18) cm(-3), which is larger than that of GaAs quantum well. The compressive strain overall reduces the transparency carrier density. The J(rad) is 0.53 kA/cm(2) for the zero optical gain. The results obtained in this work will be useful in designing quantum well GaN laser diodes and detectors. (C) 1996 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on the valence subbands of the zinc-blende GaN/Ga0.85Al0.15N strained quantum wells obtained by a 6x6 Hamiltonian (including heavy hole, light hole and spin-orbit splitting band), optical gain and radiative current density are calculated for the strained quantum well laser structures. The compressive strain in the GaN well region strongly depresses the TM mode optical gain and enhances the TE mode optical gain.