957 resultados para EPITAXIAL CRYSTALLIZATION
Resumo:
There are now more than 1200 papers a year describing research results using the 'neoteric' solvents, known as ionic liquids (ILs). If ILs are such highly studied solvents, why has there been so comparatively little research in their use in crystallization? Here we explore this question and discuss possible strategies for utilization of the mundane and the unique aspects of ILs for novel crystallization strategies including crystallization of high and low melting solids using thermal shifts; ''solvothermal'' techniques; slow diffusion; electrocrystallization; and use of a co-solvent. The results presented here and those appearing in the literature indicate both the complex nature of these solvents and their promise in delivering unique solvation, metal ion coordination numbers, coordination polymer motifs, and metal-anion interactions, to name but a few. These complex, but fascinating, results and the promise of much more intimate control over crystallization processes will drive a growing interest in using ILs as crystallization solvents.
Resumo:
Perovskite phase instability of BiMnO3 has been exploited to synthesize epitaxial metal oxide magnetic nanocrystals. Thin film processing conditions are tuned to promote the breakdown of the perovskite precursor into Bi2O3 matrix and magnetic manganese oxide islands. Subsequent cooling in vacuum ensures complete volatization of the Bi2O3, thus leaving behind an array of self-assembled magnetic Mn3O4 nanostructures. Both shape and size can be systematically controlled by the ambient oxygen environments and deposition time.As such, this approach can be extended to any other Bi-based complex ternary oxide system as it primarily hinges on the breakdown of parent Bi-based precursor and subsequent Bi2O3 volatization.
Resumo:
The phase structure evolution of high impact polypropylene copolymer (IPC) during molten-state annealing and its influence on crystallization behaviour were studied. An entirely different architecture of the IPC melt was observed after being annealed, and this architecture resulted in variations of the crystallization behaviour. In addition, it was found that the core-shell structure of the dispersed phase was completely destroyed and the sizes of the dispersed domains increased sharply after being annealed at 200 degrees C for 200 min. Through examination of the coarseness of the phase morphology using phase contrast microscopy (PCM), it was found that a co-continuous structure and an abnormal 'sea-island' structure generally appeared with an increase in annealing time. The original matrix PP component appeared as a dispersed phase, whereas the copolymer components formed a continuous 'sea-island' structure. This change is ascribed to the large tension induced by solidification at the phase interface and the great content difference between the components. When the temperature was reduced the structure reverted to its original form. With increasing annealing time, the spherulite profiles became more defined and the spherulite birefringence changed from vague to clear. Overall crystallization rates and nucleation densities decreased, but the spherulite radial growth rates remained almost constant, indicating that molten-state annealing mainly affects the nucleation ability of IPC, due to a coarsened microstructure and decreased interface area. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Spectroscopic absorption and emission measurements have been used to study laser deposition of YBCO films. They show that >95% of the monatomic Y and Ba initially ablated from the target undergo gas-phase chemical combination before film deposition. In contrast, considerable monatomic Cu persists into the deposition region. in this region, equilibrated gas temperatures are of the order of 2700 K. It is suggested that this high temperature facilitates film crystallization and epitaxial growth. The survival of monatomic Cu in the plume to the site of deposition is a manifestation of its endothermic reaction with O-2.
Resumo:
We report on the non-volatile resistive switching properties of epitaxial nickel oxide (NiO) nanostructures, 10-100 nm wide and up to 30 nm high grown on (001)-Nb:SrTiO3 substrates. Conducting-atomic force microscopy on individual nano-islands confirms prominent bipolar switching with a maximum ON/OFF ratio of similar to 10(3) at a read voltage of similar to+0.4V. This ratio is found to decrease with increasing height of the nanostructure. Linear fittings of I-V loops reveal that low and high resistance states follow Ohmic-conduction and Schottky-emission mechanism, respectively. The switching behavior (dependence on height) is attributed to the modulation of the carrier density at the nanostructure-substrate interface due to the applied electric field.
Resumo:
The influence of both compressive and tensile epitaxial strain along with the electrical boundary conditions on the ferroelastic and ferroelectric domain patterns of bismuth ferrite films was studied. BiFeO3 films were grown on SrTiO3(001), DyScO3(110), GdScO3(110), and SmScO3(110) substrates to investigate the effect of room temperature in-plane strain ranging from -1.4% to +0.75%. Piezoresponse force microscopy, transmission electron microscopy, x-ray diffraction measurements, and ferroelectric polarization measurements were performed to study the properties of the films. We show that BiFeO3 films with and without SrRuO3 bottom electrode have different growth mechanisms and that in both cases reduction of the domain variants is possible. Without SrRuO3, stripe domains with reduced variants are formed on all rare earth scandate substrates because of their monoclinic symmetry. In addition, tensile strained films exhibit a rotation of the unit cell with increasing film thickness. On the other side, the presence of SrRuO3 promotes step flow growth of BiFeO3. In case of vicinal SrTiO3 and DyScO3 substrates with high quality SrRuO3 bottom electrode and a low miscut angle of approximate to 0.15 degrees we observed suppression of the formation of certain domain variants. The quite large in-plane misfit of SrRuO3 with GdScO3 and SmScO3 prevents the growth of high quality SrRuO3 films and subsequent domain variants reduction in BiFeO3 on these substrates, when SrRuO3 is used as a bottom electrode.
Resumo:
PbZrO3/SrRuO3/SrTiO3 (100) epitaxial heterostructures with different thickness of the PbZrO3 (PZO) layer (d(PZO) similar to 5-160 nm) were fabricated by pulsed laser deposition. The ultrathin PZO films (d(PZO) <= 10 nm) were found to possess a rhombohedral structure. On increasing the PZO film thickness, a bulk like orthorhombic phase started forming in the film with d(PZO) similar to 22 nm and became abundant in the thicker films. Nanobeam electron diffraction and room-temperature micro-Raman measurements revealed that the stabilization of the rhombohedral phase of PZO could be attributed to the epitaxial strain accommodated by the heterostructures. Room-temperature polarization vs electric field measurements performed on different samples showed characteristic double hysteresis loops of antiferroelectric materials accompanied by a small remnant polarization for the thick PZO films (dPZO >= 50 nm). The remnant polarization increased by reducing the PZO layer thickness, and a ferroelectric like hysteresis loop was observed for the sample with d(PZO) similar to 22 nm. Local ferroelectric properties measured by piezoresponse force microscopy also exhibited a similar thickness-dependent antiferroelectric-ferroelectric transition. Room-temperature electrical properties observed in the PZO thin films in correlation to their structural characteristics suggested that a ferroelectric rhombohedral phase could be stabilized in thin epitaxial PZO films experiencing large interfacial compressive stress.