835 resultados para Computer Learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on the mechanisms and processes underlying navigation has traditionally been limited by the practical problems of setting up and controlling navigation in a real-world setting. Thanks to advances in technology, a growing number of researchers are making use of computer-based virtual environments to draw inferences about real-world navigation. However, little research has been done on factors affecting human–computer interactions in navigation tasks. In this study female students completed a virtual route learning task and filled out a battery of questionnaires, which determined levels of computer experience, wayfinding anxiety, neuroticism, extraversion, psychoticism and immersive tendencies as well as their preference for a route or survey strategy. Scores on personality traits and individual differences were then correlated with the time taken to complete the navigation task, the length of path travelled,the velocity of the virtual walk and the number of errors. Navigation performance was significantly influenced by wayfinding anxiety, psychoticism, involvement and overall immersive tendencies and was improved in those participants who adopted a survey strategy. In other words, navigation in virtual environments is effected not only by navigational strategy, but also an individual’s personality, and other factors such as their level of experience with computers. An understanding of these differences is crucial before performance in virtual environments can be generalised to real-world navigational performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer games have now been around for over three decades and the term serious games has been attributed to the use of computer games that are thought to have educational value. Game-based learning (GBL) has been applied in a number of different fields such as medicine, languages and software engineering. Furthermore, serious games can be a very effective as an instructional tool and can assist learning by providing an alternative way of presenting instructions and content on a supplementary level, and can promote student motivation and interest in subject matter resulting in enhanced learning effectiveness. REVLAW (Real and Virtual Reality Law) is a research project that the departments of Law and Computer Science of Westminster University have proposed as a new framework in which law students can explore a real case scenario using Virtual Reality (VR) technology to discover important pieces of evidence from a real-given scenario and make up their mind over the crime case if this is a murder or not. REVLAW integrates the immersion into VR as the perception of being physically present in a non-physical world. The paper presents the prototype framework and the mechanics used to make students focus on the crime case and make the best use of this immersive learning approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hypothesis that the same educational objective, raised as cooperative or collaborative learning in university teaching does not affect students’ perceptions of the learning model, leads this study. It analyses the reflections of two students groups of engineering that shared the same educational goals implemented through two different methodological active learning strategies: Simulation as cooperative learning strategy and Problem-based Learning as a collaborative one. The different number of participants per group (eighty-five and sixty-five, respectively) as well as the use of two active learning strategies, either collaborative or cooperative, did not show differences in the results from a qualitative perspective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social media tools are increasingly popular in Computer Supported Collaborative Learning and the analysis of students' contributions on these tools is an emerging research direction. Previous studies have mainly focused on examining quantitative behavior indicators on social media tools. In contrast, the approach proposed in this paper relies on the actual content analysis of each student's contributions in a learning environment. More specifically, in this study, textual complexity analysis is applied to investigate how student's writing style on social media tools can be used to predict their academic performance and their learning style. Multiple textual complexity indices are used for analyzing the blog and microblog posts of 27 students engaged in a project-based learning activity. The preliminary results of this pilot study are encouraging, with several indexes predictive of student grades and/or learning styles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning Analytics is an emerging field focused on analyzing learners’ interactions with educational content. One of the key open issues in learning analytics is the standardization of the data collected. This is a particularly challenging issue in serious games, which generate a diverse range of data. This paper reviews the current state of learning analytics, data standards and serious games, studying how serious games are tracking the interactions from their players and the metrics that can be distilled from them. Based on this review, we propose an interaction model that establishes a basis for applying Learning Analytics into serious games. This paper then analyzes the current standards and specifications used in the field. Finally, it presents an implementation of the model with one of the most promising specifications: Experience API (xAPI). The Experience API relies on Communities of Practice developing profiles that cover different use cases in specific domains. This paper presents the Serious Games xAPI Profile: a profile developed to align with the most common use cases in the serious games domain. The profile is applied to a case study (a demo game), which explores the technical practicalities of standardizing data acquisition in serious games. In summary, the paper presents a new interaction model to track serious games and their implementation with the xAPI specification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different types of serious games have been used in elucidating computer science areas such as computer games, mobile games, Lego-based games, virtual worlds and webbased games. Different evaluation techniques have been conducted like questionnaires, interviews, discussions and tests. Simulation have been widely used in computer science as a motivational and interactive learning tool. This paper aims to evaluate the possibility of successful implementation of simulation in computer programming modules. A framework is proposed to measure the impact of serious games on enhancing students understanding of key computer science concepts. Experiments will be held on the EEECS of Queen’s University Belfast students to test the framework and attain results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of new learning models has been of great importance throughout recent years, with a focus on creating advances in the area of deep learning. Deep learning was first noted in 2006, and has since become a major area of research in a number of disciplines. This paper will delve into the area of deep learning to present its current limitations and provide a new idea for a fully integrated deep and dynamic probabilistic system. The new model will be applicable to a vast number of areas initially focusing on applications into medical image analysis with an overall goal of utilising this approach for prediction purposes in computer based medical systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]In face recognition, where high-dimensional representation spaces are generally used, it is very important to take advantage of all the available information. In particular, many labelled facial images will be accumulated while the recognition system is functioning, and due to practical reasons some of them are often discarded. In this paper, we propose an algorithm for using this information. The algorithm has the fundamental characteristic of being incremental. On the other hand, the algorithm makes use of a combination of classification results for the images in the input sequence. Experiments with sequences obtained with a real person detection and tracking system allow us to analyze the performance of the algorithm, as well as its potential improvements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]Most face recognition systems are based on some form of batch learning. Online face recognition is not only more practical, it is also much more biologically plausible. Typical batch learners aim at minimizing both training error and (a measure of) hypothesis complexity. We show that the same minimization can be done incrementally as long as some form of ”scaffolding” is applied throughout the learning process. Scaffolding means: make the system learn from samples that are neither too easy nor too difficult at each step. We note that such learning behavior is also biologically plausible. Experiments using large sequences of facial images support the theoretical claims. The proposed method compares well with other, numerical calculus-based online learners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this extended abstract, we discuss recent research at Worcester into the inclusion of AI into ‘Serious Games’. Serious Games research intends to harness the power of computer game technology to produce educational and training materials. We prefer the name ‘Immersive Environments’ (IEs) since this emphasises the human psychological dimension. Creation of compelling and convincing learning software requires a rich engagement of the learner, and a convincing learning experience. We believe that various aspects of the AI tradition can inform the production of such learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to crystallize recent research performed at the University of Worcester to investigate the feasibility of using the commercial game engine ‘Unreal Tournament 2004’ (UT2004) to produce ‘Educational Immersive Environments’ (EIEs) suitable for education and training. Our research has been supported by the UK Higher Education Academy. We discuss both practical and theoretical aspects of EIEs. The practical aspects include the production of EIEs to support high school physics education, the education of architects, and the learning of literacy by primary school children. This research is based on the development of our novel instructional medium, ‘UnrealPowerPoint’. Our fundamental guiding principles are that, first, pedagogy must inform technology, and second, that both teachers and pupils should be empowered to produce educational materials. Our work is informed by current educational theories such as constructivism, experiential learning and socio-cultural approaches as well as elements of instructional design and game principles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questo lavoro di tesi riguarda lo studio e l’implementazione di un algoritmo di multiple kernel learning (MKL) per la classificazione e la regressione di dati di neuroimaging ed, in particolare, di grafi di connettività funzionale. Gli algoritmi di MKL impiegano una somma pesata di vari kernel (ovvero misure di similarità) e permettono di selezionare le features utili alla discriminazione delle istanze durante l’addestramento del classificatore/regressore stesso. L’aspetto innovativo introdotto in questa tesi è stato lo studio di un nuovo kernel tra grafi di connettività funzionale, con la particolare caratteristica di conservare l’informazione relativa all’importanza di ogni singola region of interest (ROI) ed impiegando la norma lp come metodo per l’aggiornamento dei pesi, al fine di ottenere soluzioni sparsificate. L’algoritmo è stato validato utilizzando mappe di connettività sintetiche ed è stato applicato ad un dataset formato da 32 pazienti affetti da deterioramento cognitivo lieve e malattia dei piccoli vasi, di cui 16 sottoposti a riabilitazione cognitiva tra un’esame di risonanza ma- gnetica funzionale di baseline e uno di follow-up. Le mappe di con- nettività sono state ottenute con il toolbox CONN. Il classificatore è riuscito a discriminare i due gruppi di pazienti in una configurazione leave-one-out annidata con un’accuratezza dell’87.5%. Questo lavoro di tesi è stato svolto durante un periodo di ricerca presso la School of Computer Science and Electronic Engineering dell’University of Essex (Colchester, UK).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08