620 resultados para CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO::ENGENHARIA DE SOFTWARE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present a theoretical study of the propagation of electromagnetic waves in multilayer structures called Photonic Crystals. For this purpose, we investigate the phonon-polariton band gaps in periodic and quasi-periodic (Fibonacci-type) multilayers made up of both positive and negative refractive index materials in the terahertz (THz) region. The behavior of the polaritonic band gaps as a function of the multilayer period is investigated systematically. We use a theoretical model based on the formalism of transfer matrix in order to simplify the algebra involved in obtaining the dispersion relation of phonon-polaritons (bulk and surface modes). We also present a quantitative analysis of the results, pointing out the distribution of the allowed polaritonic bandwidths for high Fibonacci generations, which gives good insight about their localization and power laws. We calculate the emittance spectrum of the electromagnetic radiation, in THZ frequency, normally and obliquely incident (s and p polarized modes) on a one-dimensional multilayer structure composed of positive and negative refractive index materials organized periodically and quasi-periodically. We model the negative refractive index material by a effective medium whose electric permittivity is characterized by a phonon-polariton frequency dependent dielectric function, while for the magnetic permeability we have a Drude like frequency-dependent function. Similarity to the one-dimensional photonic crystal, this layered effective medium, called polaritonic Crystals, allow us the control of the electromagnetic propagation, generating regions named polaritonic bandgap. The emittance spectra are determined by means of a well known theoretical model based on Kirchoff s second law, together with a transfer matrix formalism. Our results shows that the omnidirectional band gaps will appear in the THz regime, in a well defined interval, that are independent of polarization in periodic case as well as in quasiperiodic case

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, we address two issues of broad conceptual and practical relevance in the study of complex networks. The first is associated with the topological characterization of networks while the second relates to dynamical processes that occur on top of them. Regarding the first line of study, we initially designed a model for networks growth where preferential attachment includes: (i) connectivity and (ii) homophily (links between sites with similar characteristics are more likely). From this, we observe that the competition between these two aspects leads to a heterogeneous pattern of connections with the topological properties of the network showing quite interesting results. In particular, we emphasize that there is a region where the characteristics of sites play an important role not only for the rate at which they get links, but also for the number of connections which occur between sites with similar and dissimilar characteristics. Finally, we investigate the spread of epidemics on the network topology developed, whereas its dissemination follows the rules of the contact process. Using Monte Carlo simulations, we show that the competition between states (infected/healthy) sites, induces a transition between an active phase (presence of sick) and an inactive (no sick). In this context, we estimate the critical point of the transition phase through the cumulant Binder and ratio between moments of the order parameter. Then, using finite size scaling analysis, we determine the critical exponents associated with this transition

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of sunspots consistently contributed to a better understanding of magnetic phenomena of the Sun, as its activity. It was found with the dynamics of sunspots that the Sun has a rotation period of twenty-seven days around your axis. With the help of Project Sun-As-A-Star that solar spectra obtained for more than thirty years we observed oscillations of both the depth of the spectral line and its equivalent width, and analysis of the return information about the characteristics of solar magnetism. It also aims to find patterns of solar magnetic activity cycle and the average period of rotation of the Sun will indicate the spectral lines that are sensitive to magnetic activity and which are not. Sensitive lines how Ti II 5381.0 Å stands as the best indicator of the solar rotation period and also shows different periods of rotation cycles of minimum and maximum magnetic activity. It is the first time we observe clearly distinct rotation periods in the different cycles. The analysis also shows that Ca II 8542.1 Å and HI 6562.0 Å indicate the cycle of magnetic activity of eleven years. Some spectral lines no indicated connection with solar activity, this result can help us search for programs planets using spectroscopic models. Data analysis was performed using the Lomb-Scargle method that makes the time series analysis for unequally spaced data. Observe different rotation periods in the cycles of magnetic activity accounts for a discussion has been debated for many decades. We verified that spectroscopy can also specify the period of stellar rotation, thus being able to generalize the method to other stars

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we analyze the effects that the presence of a near gas giant planet can cause in its host star. It has been argued that the star planet interaction can cause changes in the coronal and chromospheric stellar activity. With this in mind, we analyze a sample of 53 extrasolar planets orbiting F, G and K main sequence stars, among them three super-Earths. In this analysis, we look for evidence of changes in the chromospheric activity due to the proximity of the giant planet. We show that, so far, there is not enough evidence to support such a hypothesis. Making use of the same sample and also taking in account available data for the Solar System, we revisit the so-called magnetic Bode s law. This law proposes the existence of a direct relationship between magnetism and rotation. By using estimations for the stellar and planetary magnetic momentM and the angular momentumL, we construct a Blackett s diagram (logL 􀀀logM). In this diagram is evident that the magnetic Bode s law is valid for both the Solar System and the new planetary systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation briefly presents the random graphs and the main quantities calculated from them. At the same time, basic thermodynamics quantities such as energy and temperature are associated with some of their characteristics. Approaches commonly used in Statistical Mechanics are employed and rules that describe a time evolution for the graphs are proposed in order to study their ergodicity and a possible thermal equilibrium between them

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study physical process that control the stellar evolution is strength influenced by several stellar parameters, like as rotational velocity, convective envelope mass deepening, and magnetic field intensity. In this study we analyzed the interconnection of some stellar parameters, as Lithium abundance A(Li), chromospheric activity and magnetic field intensity as well as the variation of these parameters as a function of age, rotational velocity, and the convective envelope mass deepening for a selected sample of solar analogs and twins stars. In particular, we analyzed the convective envelope mass deepening and the dispersion of lithium abundance for these stars. We also studied the evolution of rotation in subgiants stars, because its belong to the following evolutionary stage of solar analogs, and twins stars. For this analyze, we compute evolutionary models with the TGEC code to derive the evolutionary stage, as well as the convective envelope mass deepening, and derive more precisely the stellar mass, and age for this 118 stars. Our Investigation shows a considerable dispersion of lithium abundance for the solar analogs stars. We also realize that this dispersion is not by the convective zone deep, in this way we observed which the scattering of A(Li) can not be explained by classical theories of mixing in the convective zone. In conclusion we have that are necessary extra-mixing process to explain this decrease of Lithium abundance in solar analogs and twins stars. We analyzed the subgiant stars because this are the subsequent evolutionary stage after the solar analogs and twins stars. For this analysis, we compute the rotational period for 30 subgiants stars observed by Co- RoT satellite. For this task we apply two different methods: Lomb-Scargle algorithm, and the Plavchan Periodogram. We apply the TGEC code we compute models with internal distribution of angular momentum to confront the predict results with the models, and the observational results. With this analyze, we showed which solid body rotation models are incompatible with the physical interpretation of observational results. As a result of our study we still concluded that the magnetic field, convective envelope mass deepening, and internal redistribution of angular momentum are essential to explain the evolution of low-mass stars, and its observational characteristics. Based on population synthesis simulation, we concluded that the solar neighborhood presents a considerable quantity of solar twins when compared with the discovered set nowadays. Altogether we foresee the existence around 400 solar analogs in the solar neighborhood (distance of 100 pc). We also study the angular momentum of solar analogs and twins, in this study we concluded that added angular momentum from a Jupiter type planet, putted in the Jupiter position, is not enough to explain the angular momentum predicted by Kraft law (Kraft 1970)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study magnetic interface roughness in F/AF bilayers. Two kinds of roughness were considered. The first one consists of isolated defects that divide the substrate in two regions, each one with an AF sub-lattice. The interface exchange coupling is considered uniform and presents a sudden change in the defects line, favoring Neel wall nucleation. Our results show the interface field dependence of the threshold thickness for the reorientation of the magnetization in the ferromagnetic film. Angular profiles show the relaxation of the magnetization, from Neel wall, at the interface, to reoriented state, at the surface. External magnetic field, perpendicular to the easy axis of the substrate, favors the reoriented state. Depending, of the external magnetic field intensity, parallel to the easy axis of the AF, the magnetization profile at surface can be parallel or perpendicular to the field direction. The second one treats of distributed deffects, periodically. The shape hysteresis curves, exchange bias and coercivity were characterized by interface field intensity and roughness pattern. Our results show that dipolar effects decrease the exchange bias and coercivity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the spectra of band structures and transmittance in magnonic quasicrystals that exhibit the so-called deterministic disorders, specifically, magnetic multilayer systems, which are built obeying to the generalized Fibonacci (only golden mean (GM), silver mean (SM), bronze mean (BM), copper mean (CM) and nickel mean (NM) cases) and k-component Fibonacci substitutional sequences. The theoretical model is based on the Heisenberg Hamiltonian in the exchange regime, together with the powerful transfer matrix method, and taking into account the RPA approximation. The magnetic materials considered are simple cubic ferromagnets. Our main interest in this study is to investigate the effects of quasiperiodicity on the physical properties of the systems mentioned by analyzing the behavior of spin wave propagation through the dispersion and transmission spectra of these structures. Among of these results we detach: (i) the fragmentation of the bulk bands, which in the limit of high generations, become a Cantor set, and the presence of the mig-gap frequency in the spin waves transmission, for generalized Fibonacci sequence, and (ii) the strong dependence of the magnonic band gap with respect to the parameters k, which determines the amount of different magnetic materials are present in quasicrystal, and n, which is the generation number of the sequence k-component Fibonacci. In this last case, we have verified that the system presents a magnonic band gap, whose width and frequency region can be controlled by varying k and n. In the exchange regime, the spin waves propagate with frequency of the order of a few tens of terahertz (THz). Therefore, from a experimental and technological point of view, the magnonic quasicrystals can be used as carriers or processors of informations, and the magnon (the quantum spin wave) is responsible for this transport and processing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n this master s dissertation a Kerr Magneto Optic s magnetometer effect was set up to do characterization of samples type films fine and ultra thin, these samples will be grown after the implementation of the sputtering technique at the magnetism laboratory of of this department. In this work a cooled electromagnet was also built the water and that it reaches close values to 10kOe with a gap of 22 mm including an area of uniform field of 25mm of diameter. The first chapter treats of the construction of this electromagnet from its dimensioning to the operation tests that involve measures of reached maximum field and temperature of the reels when operated during one hour. The second chapter is dedicated to the revision of the magnetism and the magnetization processes as well as it presents a theoretical base regarding the magnetic energies found in films and magnetic multilayer. In the sequence, the third chapter, is especially dedicated the description of the effects magneto opticians the effect kerr in the longitudinal, traverse and polar configurations, using for so much only the classic approach of the electromagnetism and the coefficients of Fresnel. Distinguished the two areas of observation of the effect regarding thickness of the film. The constructive aspects of the experimental apparatus as well as the details of its operation are explained at the room surrender, also presenting the preliminary results of the measures made in one serializes of permalloy films and concluding with the results of the characterization of the first films of iron and permalloy grown here at the theoretical and experimental physics department at UFRN

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work investigates some consequences that arise from the use of a modifed lagrangean for the eletromagnetic feld in two diferent contexts: a spatially homogeneous and isotropic universe whose dynamics is driven by a magnetic feld plus a cosmological parameter A, and the problem of a static and charged point mass (charged black hole). In the cosmological case, three diferent general solutions were derived. The first, with a null cosmological parameter A, generalizes a particular solution obtained by Novello et al [gr-qc/9806076]. The second one admits a constant A and the third one allows A to be a time-dependent parameter that sustains a constant magnetic feld. The first two solutions are non-singular and exhibit in ationary periods. The third case studied shows an in ationary dynamics except for a short period of time. As for the problem of a charged point mass, the solutions of the Einstein-Maxwell equations are obtained and compared with the standard Reissner-Nordstrom solution. Contrary to what happens in the cosmological case, the physical singularity is not removed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant observational effort has been directed to unveiling the nature of the so-called dark energy. However, given the large number of theoretical possibilities, it is possible that this a task cannot be based only on observational data. In this thesis we investigate the dark energy via a thermodynamics approach, i.e., we discuss some thermodynamic properties of this energy component assuming a general time-dependent equation-of-state (EoS) parameter w(a) = w0 + waf(a), where w0 and wa are constants and f(a) may assume different forms. We show that very restrictive bounds can be placed on the w0 - wa space when current observational data are combined with the thermodynamic constraints derived. Moreover, we include a non-zero chemical potential μ and a varying EoS parameter of the type ω(a) = ω0 + F(a), therefore more general, in this thermodynamical description. We derive generalized expressions for the entropy density and chemical potential, noting that the dark energy temperature T and μ evolve in the same way in the course of the cosmic expansion. The positiveness of entropy S is used to impose thermodynamic bounds on the EoS parameter ω(a). In particular, we find that a phantom-like behavior ω(a) < −1 is allowed only when the chemical potential is a negative quantity (μ < 0). Thermodynamically speaking, a complete treatment has been proposed, when we address the interaction between matter and energy dark

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since Michel Mayor and his student Didier Queloz s pioneer announcement, in 1995, of the existence of a planet orbiting the star 51 Peg, up to present date, 695 extrasolar planets orbiting stars of spectral type F, G, K and M have been discovered. A study on the behavior of the total angular momentum of the planetary systems known up to present date becomes relevant when we know that about 98% of the angular momentum of the solar system is associated with the planets, although they represent only 0.15 percent of the mass of the whole system. In this dissertation we study the behavior of stellar angular momentum, orbital angular momentum and total angular momentum in a sample of 282 stars harboring planets, including 40 multiple systems. We observed that planetary systems containing more than one known planet have both higher orbital angular momentum and total angular momentum compared to those who have only one planet. This analysis shows that multiplanet systems tend to have higher momenta, suggesting that the planets in such systems that contribute to the greater portion momenta have been found. Thus, planetary systems with lower values for the momenta represent the best candidates to the discovery of new planets

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico