941 resultados para Diffusion chambers
Photoluminescence study of AlGaInP/GaInP quantum well intermixing induced by zinc impurity diffusion
Resumo:
AlGaInP/GaInP quantum well intermixing phenomena induced by Zn impurity diffusion at 540 degrees C were studied using room-temperature photo luminescence (PL) spectroscopy. As the diffusion time increased from 40 to 120 min, PL blue shift taken on the AlGaInP/GaInP quantum well regions increased from 36.3 to 171.6 meV. Moreover, when the diffusion time was equal to or above 60 min, it was observed firstly that a PL red shift occurred with a PL blue shift on the samples. After detailed analysis, it was found that the red-shift PL spectra were measured on the Ga0.51In0.49P buffer layer of the samples, and the mechanism of the PL red shift and the PL blue shift were studied qualitatively. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Circular dichromatic absorption difference spectroscopy is developed to measure the spin diffusion dynamics of electrons in bulk n-GaAs. This spectroscopy has higher detection sensitivity over homodyne detection of spin-grating-diffracted signal. A model to describe circular dichromatic absorption difference signal is derived and used to fit experimental signal to retrieve decaying rate of spin gratings. A spin diffusion constant of D-s=201 +/- 25 cm(2)/s for bulk n-GaAs has been measured at room temperature using this technique and is close to electron diffusion constant (D-c), which is much different from the case in GaAs quantum wells where D-s is markedly less than D-c.
Resumo:
Doping of magnetic element Mn and Cr in GaN was achieved by thermal diffusion. The conductivity of the samples, which were all n-type, did not change significantly after the diffusion doping. X-ray diffraction measurements revealed no secondary phase in the samples. Experiments using superconducting quantum interference device (SQUID) showed that the samples were ferromagnetic at 5 and 300 K, implying the Curie temperature to be around or over 300 K, despite their n-type conductivity. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The minority carrier diffusion length of n-type GaN films grown by metalorganic chemical vapor deposition (MOCVD) has been studied by measuring the surface photovoltaic (PV) spectra. It was found that the minority carrier diffusion length of undoped n-type GaN is considerably larger than that in lightly Si-doped GaN. However, the data suggested that the dislocation and electron concentration appear not to be responsible for the minority carrier diffusion length. It is suggested that Si doping plays an important role in decreasing the minority carrier diffusion length.
Resumo:
As-doped p-type ZnO films were grown on GaAs by sputtering and thermal diffusion process. Hall effect measurements showed that the as-grown films were of n-type conductivity and they were converted to p-type behavior after thermal annealing. Moreover, the hole concentration of As-doped p-type ZnO was very impressible to the oxygen ambient applied during the annealing process. In addition, the bonding state of As in the films was investigated by x-ray photoelectron spectroscopy. This study not only demonstrated an effective method for reliable and reproducible p-type ZnO fabrication but also helped to understand the doping mechanism of As-doped ZnO. (c) 2006 American Institute of Physics.
Resumo:
We investigate the effects of lightly Si doping on the minority carrier diffusion length in n-type GaN films by analyzing photovoltaic spectra and positron annihilation measurements. We find that the minority carrier diffusion length in undoped n-type GaN is much larger than in lightly Si-doped GaN. Positron annihilation analysis demonstrates that the concentration of Ga vacancies is much higher in lightly Si-doped GaN and suggests that the Ga vacancies instead of dislocations are responsible for the smaller minority carrier diffusion length in the investigated Si-doped GaN samples due to the effects of deep level defects. (c) 2006 American Institute of Physics.
Resumo:
Photoluminescence (PL) and photo induced current transient spectroscopy (PICTS) have been used to study deep levels in semi-insulating (SI) InP prepared by annealing undoped InP in pure phosphorus (PP) and iron phosphide (IP) ambient. Defects are much fewer in IP SI-InP than in PP SI-InP. Deep-level-related PL emission could only be detected in IP SI-InP. The results indicate that Fe diffusion inhibits the thermal formation of a number of defects in annealed InP. A complex defect has been formed in the annealing process in the presence of Fe.
Resumo:
Bandgap tuning of the InGaAsP/InP multiple quant um well (MQW) laser structure by the impurity-free vacancy diffusion (IFVD) is investigated using photoluminescence. It has been demonstrated that the effects of the plasma bombardment to the:sample surface involved in the IFVD technique can enhance the intermixing of the InGaAsP/InP MQW laser structure. The reliability of the IFVD technique, particularly the effects of the surface decomposition and the intrinsic defects formed in the growth or preparation of the wafer, has been discussed.
Resumo:
The annealing behavior of Si implanted with Ge and then BF2 has been characterized by double crystal X-ray diffraction (DCXRD) and secondary ion mass spectroscopy (SIMS). The results show that annealing at 600 degrees C for 60 minutes can only remove a little damage induced by implantation and nearly no redistribution of Ge and B atoms has occurred during the annealing. The initial crystallinity of Si is fully recovered after annealing at 950 degrees C for 60 minutes and accompanied by Ge diffusion. Very shallow boron junction depth has been formed. When annealing temperature rises to 1050 degrees C, B diffusion enhances, which leads to a deep diffusion and good distribution of B atoms into the Si substrate. The X-ray diffraction (004) rocking curves from the samples annealed at 1050 degrees C for 60 minutes display two SiGe peaks, which may be related to the B concentration profiles.
Resumo:
Cubic GaN films were grown on GaAs(1 0 0) substrates by low-pressure metalorganic vapor-phase epitaxy at high temperature. We have found a nonlinear relation between GaN film thickness and growth timer and this nonlinearity becomes more obvious with increasing growth temperature. We assumed it was because of Ga diffusion through the GaN film, and developed a model which agrees well with the experimental results. These results raise questions concerning the role of Ga diffusion through the GaN film, which may affect the electrical and optical properties of the material. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
We investigate the annealing behavior of Photoluminescence (PL) from self-assembled InAs quantum dots (QDs) with different thicknesses GaAs cap layers. The diffusion introduced by annealing treatment results in a blue-shift of the QD PL peak, and a decrease in the integrated intensity. The strain present in QDs enhances the diffusion, and the QDs with the cap layers of different thicknesses will experience a strain of different strength. This can lend to a, better understanding of the larger blue-shift of the PL peak of the deeper buried QDs, and the different variance of the full width at half maximum of the luminescence from QDs with the cap layers of different thicknesses.
Resumo:
By using the technique of elastic recoil detection (ERD), we have measured the hydrogen profiles in a-Si:H/a-Si structure samples annealed at various temperatures with and without electrical bias, and investigated the influence of electrical bias on hydrogen diffusion. The results show that hydrogen diffusion in a-Si is significantly enhanced by the action of electrical bias. The existence of the excess carriers, which are introduced by electrical injection, is considered to be responsible for the enhancement of hydrogen diffusion, and the microprocess of hydrogen transport has been exploited.
Resumo:
The transient charge response Q(t) of a two-dimensional electron gas (2DEG) in GaAs/AlxGa1-xAs heterostructures to a small pulse of the gate voltage, applied between the top gate and source electrodes in a Corbino structure, was employed to directly measure the effective diffusion constant of a 2DEG in the quantum Hall regime. The measured diffusion constant D showed a drastic change as the magnetic field was swept through the integer fillings of the Landau levels.
Resumo:
808 nm high-power laser diodes are gown by MBE. In the laser structure, the combination of Si-doped GRIN (graded-index) region adjacent to n-AlGaAs cladding layer with reduced Be doping concentration near the active region has been used to diminish Be diffusion and oxygen incorporation. As compared with the laser structure which has undoped GRIN region and uniform doping concentration for Si and Be, respectively, in the cladding layers, the slope efficiency has increased by about 8%. Typical threshold current density of 300 A/cm(2) and the minimum threshold current density of 220 A/cm(2) for lasers with 500 mu m cavity length are obtained. A high slope efficiency of 1.3 W/A for coated lasers with 1000 mu m cavity length is also demonstrated, Recorded CW output power at room temperature has reached 2.3 W.