944 resultados para Chesterton, G. K
Resumo:
Background: Interventions to increase cooking skills (CS) and food skills (FS) as a route to improving overall diet are popular within public health. This study tested a comprehensive model of diet quality by assessing the influence of socio-demographic, knowledge- and psychological-related variables alongside perceived CS and FS abilities. The correspondence of two measures of diet quality further validated the Eating Choices Index (ECI) for use in quantitative research.
Methods: A cross-sectional survey was conducted in a quota-controlled nationally representative sample of 1049 adults aged 20–60 years drawn from the Island of Ireland. Surveys were administered in participants’ homes via computer-assisted personal interviewing (CAPI) assessing a range of socio-demographic, knowledge- and psychological-related variables alongside perceived CS and FS abilities. Regression models were used to model factors influencing diet quality. Correspondence between 2 measures of diet quality was assessed using chi-square and Pearson correlations.
Results: ECI score was significantly negatively correlated with DINE Fat intake (r = -0.24, p < 0.001), and ECI score was significantly positively correlated with DINE Fibre intake (r = 0.38, p < 0.001), demonstrating a high agreement. Findings indicated that males, younger respondents and those with no/few educational qualifications scored significantly lower on both CS and FS abilities. The relative influence of socio-demographic, knowledge, psychological variables and CS and FS abilities on dietary outcomes varied, with regression models explaining 10–20 % of diet quality variance. CS ability exerted the strongest relationship with saturated fat intake (β = -0.296, p < 0.001) and was a significant predictor of fibre intake (β = -0.113, p < 0.05), although not for healthy food choices (ECI) (β = 0.04, p > 0.05).
Conclusion: Greater CS and FS abilities may not lead directly to healthier dietary choices given the myriad of other factors implicated; however, CS appear to have differential influences on aspects of the diet, most notably in relation to lowering saturated fat intake. Findings suggest that CS and FS should not be singular targets of interventions designed to improve diet; but targeting specific sub-groups of the population e.g. males, younger adults, those with limited education might be more fruitful. A greater understanding of the interaction of factors influencing cooking and food practices within the home is needed.
Resumo:
AZEVEDO, Luciana Karla Araújo de, et al. Caracterização e correlação do fenômeno pró-zona com títulos de sororeatividade do VDRL e reação de imuno-fluorescência indireta em soros de pacientes com sífilis. Revista Brasileira de Análises Clínicas, Rio de Janeiro, v. 38, n. 2, p. 183-187, 2006.
Resumo:
CMFRI,
Resumo:
Lanthanum phosphate is one among the lanthanide family of “Rare Earths” following the periodic table of elements. Known under the generic name, Monazite, the rare earth phosphates have melting points above 1900 °C, high thermal phase stability, low thermal conductivity and thermal expansion coefficient similar to some of the high temperature oxides like alumina and zirconia.
Resumo:
Da sempre l'uomo ha osservato le stelle e il primo a intuire che lo studio degli spettri avrebbe permesso la comprensione della fisica e della chimica delle stelle fu il padre gesuita Secchi. Uno spettro contiene informazioni sui vari processi atmosferici stellari, dove la profondità e la forma di una riga permettono di raccogliere dati sulle condizioni fisiche del gas nelle regioni in cui essa si è formata. La classificazione spettrale è iniziata con il padre gesuita Secchi, che divise le stelle in quattro categorie. In seguito fu sostituita dalla classificazione di Harvard, composta da sette classi, O, B, A, F, G, K, M, caratterizzate da diversi range di temperature. Per risolvere il problema delle diverse luminosità all'interno della stessa classe, Yerkes creó u a nuova classificazione, data da un sistema bidimensionale che oltre a considerare la temperatura tiene conto della luminosità, che influisce molto nella struttura dello spettro. Si sono presi in considerazione anche gli spettri peculiari, cioè che presentano delle anomalie, come un'insolita abbondanza di metalli. Nell'ultimo capitolo viene trattato il diagramma H-R come applicazione delle classificazioni spettrali, accennando come il punto di turn-off del diagramma permetta di calcolare l'età di un ammasso stellare.
Resumo:
Kirjoittaja A. G. K-n. = Anton Gustaf Keldán.
Resumo:
Presento aquí un poema del humanista hispano-latino Juan de Verzosa. El texto fue enviado por el autor en 1555, junto con una carta, a Jerónimo Zurita, y se conserva actualmente en la Biblioteca de la Real Academia de la Historia de Madrid (Ms.9/112, fols.535-536). Aparentemente trata de un amigo del autor llamado Julio aficionado a la caza de aves. Pero la lectura del poema a la luz de las Epístolas de Verzosa permite entrever la intención última del autor e incluso quién fue el ‘cazador’ Julio aludido.
Resumo:
AZEVEDO, Luciana Karla Araújo de, et al. Caracterização e correlação do fenômeno pró-zona com títulos de sororeatividade do VDRL e reação de imuno-fluorescência indireta em soros de pacientes com sífilis. Revista Brasileira de Análises Clínicas, Rio de Janeiro, v. 38, n. 2, p. 183-187, 2006.
Resumo:
Membrane proteins, which reside in the membranes of cells, play a critical role in many important biological processes including cellular signaling, immune response, and material and energy transduction. Because of their key role in maintaining the environment within cells and facilitating intercellular interactions, understanding the function of these proteins is of tremendous medical and biochemical significance. Indeed, the malfunction of membrane proteins has been linked to numerous diseases including diabetes, cirrhosis of the liver, cystic fibrosis, cancer, Alzheimer's disease, hypertension, epilepsy, cataracts, tubulopathy, leukodystrophy, Leigh syndrome, anemia, sensorineural deafness, and hypertrophic cardiomyopathy.1-3 However, the structure of many of these proteins and the changes in their structure that lead to disease-related malfunctions are not well understood. Additionally, at least 60% of the pharmaceuticals currently available are thought to target membrane proteins, despite the fact that their exact mode of operation is not known.4-6 Developing a detailed understanding of the function of a protein is achieved by coupling biochemical experiments with knowledge of the structure of the protein. Currently the most common method for obtaining three-dimensional structure information is X-ray crystallography. However, no a priori methods are currently available to predict crystallization conditions for a given protein.7-14 This limitation is currently overcome by screening a large number of possible combinations of precipitants, buffer, salt, and pH conditions to identify conditions that are conducive to crystal nucleation and growth.7,9,11,15-24 Unfortunately, these screening efforts are often limited by difficulties associated with quantity and purity of available protein samples. While the two most significant bottlenecks for protein structure determination in general are the (i) obtaining sufficient quantities of high quality protein samples and (ii) growing high quality protein crystals that are suitable for X-ray structure determination,7,20,21,23,25-47 membrane proteins present additional challenges. For crystallization it is necessary to extract the membrane proteins from the cellular membrane. However, this process often leads to denaturation. In fact, membrane proteins have proven to be so difficult to crystallize that of the more than 66,000 structures deposited in the Protein Data Bank,48 less than 1% are for membrane proteins, with even fewer present at high resolution (< 2Å)4,6,49 and only a handful are human membrane proteins.49 A variety of strategies including detergent solubilization50-53 and the use of artificial membrane-like environments have been developed to circumvent this challenge.43,53-55 In recent years, the use of a lipidic mesophase as a medium for crystallizing membrane proteins has been demonstrated to increase success for a wide range of membrane proteins, including human receptor proteins.54,56-62 This in meso method for membrane protein crystallization, however, is still by no means routine due to challenges related to sample preparation at sub-microliter volumes and to crystal harvesting and X-ray data collection. This dissertation presents various aspects of the development of a microfluidic platform to enable high throughput in meso membrane protein crystallization at a level beyond the capabilities of current technologies. Microfluidic platforms for protein crystallization and other lab-on-a-chip applications have been well demonstrated.9,63-66 These integrated chips provide fine control over transport phenomena and the ability to perform high throughput analyses via highly integrated fluid networks. However, the development of microfluidic platforms for in meso protein crystallization required the development of strategies to cope with extremely viscous and non-Newtonian fluids. A theoretical treatment of highly viscous fluids in microfluidic devices is presented in Chapter 3, followed by the application of these strategies for the development of a microfluidic mixer capable of preparing a mesophase sample for in meso crystallization at a scale of less than 20 nL in Chapter 4. This approach was validated with the successful on chip in meso crystallization of the membrane protein bacteriorhodopsin. In summary, this is the first report of a microfluidic platform capable of performing in meso crystallization on-chip, representing a 1000x reduction in the scale at which mesophase trials can be prepared. Once protein crystals have formed, they are typically harvested from the droplet they were grown in and mounted for crystallographic analysis. Despite the high throughput automation present in nearly all other aspects of protein structure determination, the harvesting and mounting of crystals is still largely a manual process. Furthermore, during mounting the fragile protein crystals can potentially be damaged, both from physical and environmental shock. To circumvent these challenges an X-ray transparent microfluidic device architecture was developed to couple the benefits of scale, integration, and precise fluid control with the ability to perform in situ X-ray analysis (Chapter 5). This approach was validated successfully by crystallization and subsequent on-chip analysis of the soluble proteins lysozyme, thaumatin, and ribonuclease A and will be extended to microfluidic platforms for in meso membrane protein crystallization. The ability to perform in situ X-ray analysis was shown to provide extremely high quality diffraction data, in part as a result of not being affected by damage due to physical handling of the crystals. As part of the work described in this thesis, a variety of data collection strategies for in situ data analysis were also tested, including merging of small slices of data from a large number of crystals grown on a single chip, to allow for diffraction analysis at biologically relevant temperatures. While such strategies have been applied previously,57,59,61,67 they are potentially challenging when applied via traditional methods due to the need to grow and then mount a large number of crystals with minimal crystal-to-crystal variability. The integrated nature of microfluidic platforms easily enables the generation of a large number of reproducible crystallization trials. This, coupled with in situ analysis capabilities has the potential of being able to acquire high resolution structural data of proteins at biologically relevant conditions for which only small crystals, or crystals which are adversely affected by standard cryocooling techniques, could be obtained (Chapters 5 and 6). While the main focus of protein crystallography is to obtain three-dimensional protein structures, the results of typical experiments provide only a static picture of the protein. The use of polychromatic or Laue X-ray diffraction methods enables the collection of time resolved structural information. These experiments are very sensitive to crystal quality, however, and often suffer from severe radiation damage due to the intense polychromatic X-ray beams. Here, as before, the ability to perform in situ X-ray analysis on many small protein crystals within a microfluidic crystallization platform has the potential to overcome these challenges. An automated method for collecting a "single-shot" of data from a large number of crystals was developed in collaboration with the BioCARS team at the Advanced Photon Source at Argonne National Laboratory (Chapter 6). The work described in this thesis shows that, even more so than for traditional structure determination efforts, the ability to grow and analyze a large number of high quality crystals is critical to enable time resolved structural studies of novel proteins. In addition to enabling X-ray crystallography experiments, the development of X-ray transparent microfluidic platforms also has tremendous potential to answer other scientific questions, such as unraveling the mechanism of in meso crystallization. For instance, the lipidic mesophases utilized during in meso membrane protein crystallization can be characterized by small angle X-ray diffraction analysis. Coupling in situ analysis with microfluidic platforms capable of preparing these difficult mesophase samples at very small volumes has tremendous potential to enable the high throughput analysis of these systems on a scale that is not reasonably achievable using conventional sample preparation strategies (Chapter 7). In collaboration with the LS-CAT team at the Advanced Photon Source, an experimental station for small angle X-ray analysis coupled with the high quality visualization capabilities needed to target specific microfluidic samples on a highly integrated chip is under development. Characterizing the phase behavior of these mesophase systems and the effects of various additives present in crystallization trials is key for developing an understanding of how in meso crystallization occurs. A long term goal of these studies is to enable the rational design of in meso crystallization experiments so as to avoid or limit the need for high throughput screening efforts. In summary, this thesis describes the development of microfluidic platforms for protein crystallization with in situ analysis capabilities. Coupling the ability to perform in situ analysis with the small scale, fine control, and the high throughput nature of microfluidic platforms has tremendous potential to enable a new generation of crystallographic studies and facilitate the structure determination of important biological targets. The development of platforms for in meso membrane protein crystallization is particularly significant because they enable the preparation of highly viscous mixtures at a previously unachievable scale. Work in these areas is ongoing and has tremendous potential to improve not only current the methods of protein crystallization and crystallography, but also to enhance our knowledge of the structure and function of proteins which could have a significant scientific and medical impact on society as a whole. The microfluidic technology described in this thesis has the potential to significantly advance our understanding of the structure and function of membrane proteins, thereby aiding the elucidation of human biology, the development of pharmaceuticals with fewer side effects for a wide range of diseases. References (1) Quick, M.; Javitch, J. A. P Natl Acad Sci USA 2007, 104, 3603. (2) Trubetskoy, V. S.; Burke, T. J. Am Lab 2005, 37, 19. (3) Pecina, P.; Houstkova, H.; Hansikova, H.; Zeman, J.; Houstek, J. Physiol Res 2004, 53, S213. (4) Arinaminpathy, Y.; Khurana, E.; Engelman, D. M.; Gerstein, M. B. Drug Discovery Today 2009, 14, 1130. (5) Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. Nat Rev Drug Discov 2006, 5, 993. (6) Dauter, Z.; Lamzin, V. S.; Wilson, K. S. Current Opinion in Structural Biology 1997, 7, 681. (7) Hansen, C.; Quake, S. R. Current Opinion in Structural Biology 2003, 13, 538. (8) Govada, L.; Carpenter, L.; da Fonseca, P. C. A.; Helliwell, J. R.; Rizkallah, P.; Flashman, E.; Chayen, N. E.; Redwood, C.; Squire, J. M. J Mol Biol 2008, 378, 387. (9) Hansen, C. L.; Skordalakes, E.; Berger, J. M.; Quake, S. R. P Natl Acad Sci USA 2002, 99, 16531. (10) Leng, J.; Salmon, J.-B. Lab Chip 2009, 9, 24. (11) Zheng, B.; Gerdts, C. J.; Ismagilov, R. F. Current Opinion in Structural Biology 2005, 15, 548. (12) Lorber, B.; Delucas, L. J.; Bishop, J. B. J Cryst Growth 1991, 110, 103. (13) Talreja, S.; Perry, S. L.; Guha, S.; Bhamidi, V.; Zukoski, C. F.; Kenis, P. J. A. The Journal of Physical Chemistry B 2010, 114, 4432. (14) Chayen, N. E. Current Opinion in Structural Biology 2004, 14, 577. (15) He, G. W.; Bhamidi, V.; Tan, R. B. H.; Kenis, P. J. A.; Zukoski, C. F. Cryst Growth Des 2006, 6, 1175. (16) Zheng, B.; Tice, J. D.; Roach, L. S.; Ismagilov, R. F. Angew Chem Int Edit 2004, 43, 2508. (17) Li, L.; Mustafi, D.; Fu, Q.; Tereshko, V.; Chen, D. L. L.; Tice, J. D.; Ismagilov, R. F. P Natl Acad Sci USA 2006, 103, 19243. (18) Song, H.; Chen, D. L.; Ismagilov, R. F. Angew Chem Int Edit 2006, 45, 7336. (19) van der Woerd, M.; Ferree, D.; Pusey, M. Journal of Structural Biology 2003, 142, 180. (20) Ng, J. D.; Gavira, J. A.; Garcia-Ruiz, J. M. Journal of Structural Biology 2003, 142, 218. (21) Talreja, S.; Kenis, P. J. A.; Zukoski, C. F. Langmuir 2007, 23, 4516. (22) Hansen, C. L.; Quake, S. R.; Berger, J. M. US, 2007. (23) Newman, J.; Fazio, V. J.; Lawson, B.; Peat, T. S. Cryst Growth Des 2010, 10, 2785. (24) Newman, J.; Xu, J.; Willis, M. C. Acta Crystallographica Section D 2007, 63, 826. (25) Collingsworth, P. D.; Bray, T. L.; Christopher, G. K. J Cryst Growth 2000, 219, 283. (26) Durbin, S. D.; Feher, G. Annu Rev Phys Chem 1996, 47, 171. (27) Talreja, S.; Kim, D. Y.; Mirarefi, A. Y.; Zukoski, C. F.; Kenis, P. J. A. J Appl Crystallogr 2005, 38, 988. (28) Yoshizaki, I.; Nakamura, H.; Sato, T.; Igarashi, N.; Komatsu, H.; Yoda, S. J Cryst Growth 2002, 237, 295. (29) Anderson, M. J.; Hansen, C. L.; Quake, S. R. P Natl Acad Sci USA 2006, 103, 16746. (30) Hansen, C. L.; Sommer, M. O. A.; Quake, S. R. P Natl Acad Sci USA 2004, 101, 14431. (31) Lounaci, M.; Rigolet, P.; Abraham, C.; Le Berre, M.; Chen, Y. Microelectron Eng 2007, 84, 1758. (32) Zheng, B.; Roach, L. S.; Ismagilov, R. F. J Am Chem Soc 2003, 125, 11170. (33) Zhou, X.; Lau, L.; Lam, W. W. L.; Au, S. W. N.; Zheng, B. Anal. Chem. 2007. (34) Cherezov, V.; Caffrey, M. J Appl Crystallogr 2003, 36, 1372. (35) Qutub, Y.; Reviakine, I.; Maxwell, C.; Navarro, J.; Landau, E. M.; Vekilov, P. G. J Mol Biol 2004, 343, 1243. (36) Rummel, G.; Hardmeyer, A.; Widmer, C.; Chiu, M. L.; Nollert, P.; Locher, K. P.; Pedruzzi, I.; Landau, E. M.; Rosenbusch, J. P. Journal of Structural Biology 1998, 121, 82. (37) Gavira, J. A.; Toh, D.; Lopez-Jaramillo, J.; Garcia-Ruiz, J. M.; Ng, J. D. Acta Crystallogr D 2002, 58, 1147. (38) Stevens, R. C. Current Opinion in Structural Biology 2000, 10, 558. (39) Baker, M. Nat Methods 2010, 7, 429. (40) McPherson, A. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 5. (41) Gabrielsen, M.; Gardiner, A. T.; Fromme, P.; Cogdell, R. J. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 127. (42) Page, R. In Methods in Molecular Biology: Structural Proteomics - High Throughput Methods; Kobe, B., Guss, M., Huber, T., Eds.; Humana Press: Totowa, NJ, 2008; Vol. 426, p 345. (43) Caffrey, M. Ann Rev Biophys 2009, 38, 29. (44) Doerr, A. Nat Methods 2006, 3, 244. (45) Brostromer, E.; Nan, J.; Li, L.-F.; Su, X.-D. Biochemical and Biophysical Research Communications 2009, 386, 634. (46) Li, G.; Chen, Q.; Li, J.; Hu, X.; Zhao, J. Anal Chem 2010, 82, 4362. (47) Jia, Y.; Liu, X.-Y. The Journal of Physical Chemistry B 2006, 110, 6949. (48) RCSB Protein Data Bank. http://www.rcsb.org/ (July 11, 2010). (49) Membrane Proteins of Known 3D Structure. http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html (July 11, 2010). (50) Michel, H. Trends Biochem Sci 1983, 8, 56. (51) Rosenbusch, J. P. Journal of Structural Biology 1990, 104, 134. (52) Garavito, R. M.; Picot, D. Methods 1990, 1, 57. (53) Kulkarni, C. V. 2010; Vol. 12, p 237. (54) Landau, E. M.; Rosenbusch, J. P. P Natl Acad Sci USA 1996, 93, 14532. (55) Pebay-Peyroula, E.; Rummel, G.; Rosenbusch, J. P.; Landau, E. M. Science 1997, 277, 1676. (56) Cherezov, V.; Liu, W.; Derrick, J. P.; Luan, B.; Aksimentiev, A.; Katritch, V.; Caffrey, M. Proteins: Structure, Function, and Bioinformatics 2008, 71, 24. (57) Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. Science 2007, 318, 1258. (58) Cherezov, V.; Yamashita, E.; Liu, W.; Zhalnina, M.; Cramer, W. A.; Caffrey, M. J Mol Biol 2006, 364, 716. (59) Jaakola, V. P.; Griffith, M. T.; Hanson, M. A.; Cherezov, V.; Chien, E. Y. T.; Lane, J. R.; IJzerman, A. P.; Stevens, R. C. Science 2008, 322, 1211. (60) Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Yao, X. J.; Weis, W. I.; Stevens, R. C.; Kobilka, B. K. Science 2007, 318, 1266. (61) Wacker, D.; Fenalti, G.; Brown, M. A.; Katritch, V.; Abagyan, R.; Cherezov, V.; Stevens, R. C. J Am Chem Soc 2010, 132, 11443. (62) Höfer, N.; Arago, D.; Caffrey, M. Biophys J 2010, 99, L23. (63) Li, L.; Ismagilov, R. F. Ann Rev Biophys 2010. (64) Pal, R.; Yang, M.; Lin, R.; Johnson, B. N.; Srivastava, N.; Razzacki, S. Z.; Chomistek, K. J.; Heldsinger, D. C.; Haque, R. M.; Ugaz, V. M.; Thwar, P. K.; Chen, Z.; Alfano, K.; Yim, M. B.; Krishnan, M.; Fuller, A. O.; Larson, R. G.; Burke, D. T.; Burns, M. A. Lab Chip 2005, 5, 1024. (65) Jayashree, R. S.; Gancs, L.; Choban, E. R.; Primak, A.; Natarajan, D.; Markoski, L. J.; Kenis, P. J. A. J Am Chem Soc 2005, 127, 16758. (66) Wootton, R. C. R.; deMello, A. J. Chem Commun 2004, 266. (67) McPherson, A. J Appl Crystallogr 2000, 33, 397.
Resumo:
O presente trabalho objetiva investigar a Revitalização dos Saberes e Práticas Kaingang Sobre as Plantas Tradicionais como Proposta de Educação Ambiental na comunidade Terra Indígena de Ligeiro no município de Charrua - RS. Trata-se de uma pesquisa de campo que busca melhor compreender o que provocou o abandono e esquecimento desses saberes, bem como possíveis alternativas teóricas e práticas para que a revitalização dos saberes culturais ancestrais seja realizada. Justifica-se pelo fato da utilização de plantas medicinais para o tratamento de enfermidades estar enraizada nas culturas indígenas e poder assim suprir, em parte, a deficiente atenção à saúde e as realidades da fome em muitas T.I. Foram realizadas visitas a campo para análise da situação atual e coleta de informações, com aplicação de entrevistas com vários indígenas, bem como com kujà e curandeiras; se implantou um horto medicinal com várias plantas, ervas e se distribuíram mudas de plantas frutíferas nativas. Para este projeto, dois alunos indígenas do IFRS - Campus Sertão atuaram na implantação deste Horto, assim como outros alunos indígenas da Escola Estadual Indígena de Ensino Médio Fág Mág (Pinheiro Grande) trabalharam e apoiaram na execução dessa ação. Através da realização de fotos e vídeos, foram analisadas também as expressões atuais da cultura Kaingang na conjuntura, os elementos significativos que estão guardados ao longo das gerações e apontamos os desafios de permanecer na comunidade e revitalizar com sustentabilidade os saberes e práticas Kaingang, sempre com um olhar incondicional pela natureza. Foram sistematizadas as denominações específicas da cada planta, em correspondência com seu nome científico e com o seu nome tradicional da cosmologia dual Kaingang (kam e kanhru). Conclui-se a partir dessa investigação que houve efetivamente o abandono e a falta de valorização de saberes e práticas relacionadas com a educação ambiental, pelas pressões da sociedade branca, o desejo de alguns indígenas de ser moderno e aceito na sociedade branca e pela ausência de trabalho de um educador ambiental. As iniciativas de revitalização são possíveis; o uso de plantas e alimentos tradicionais estão relacionadas com atividades que precisam ser vivenciadas primordialmente na escola, na relação com os kujà tradicionais e no desenvolvimento de projetos específicos e na motivação permanente para a responsabilidade ambiental, preservando a cultura e os costumes Kaingang que ainda são preciosos, especialmente na promoção da saúde da comunidade
Resumo:
Citrullus lanatus (Thunb.) Matsumura and Nakai (Cucurbitaceae) is an important cucurbit crop worldwide. Global production of watermelon is about 90 million metric tonnes per annum, making it among the top five most consumed fresh fruits. The objective of this study was to evaluate seed variability in different segregating populations, and determine heritability of traits of watermelon. Interspecific crosses were made between two cultivars of C. lanatus (Bebu and Wlêwlê Small Seeds (WSS) were performed at Research Station of Nangui Abrogoua University in Abidjan, Côte d’Ivoire. There was wide variability between parental, F1, BC1 (first generation of back-crossing) and F2 seeds. Seeds of all hybrid populations were intermediate versus those of the parents. Also, crossing did not affect F1 and F2 seed characters, but affected those of BC1 because of maternal effects. Thus, back-crossing on Bebu cultivar produced seeds which looked like those of Bebu; while back-crossing on WSS cultivar produced seeds similar to those of WSS. Principal Component Analysis (PCA) and individuals repartitioning revealed that Bebu and WSS cultivars were genetically distinct and showed three main groups: two groups from each parental line and one from a recombinant line (hybrids). F2 population had a wide individual’s dispersion, and contained seeds of all other populations. High heritability was observed for all evaluated characters.
Resumo:
2016
Resumo:
O uso sustentável dos agroecossistemas requer a formulação de modelos de desenvolvimento conservacionistas, compreendendo um conjunto de práticas de conservação do solo, da água e da biodiversidade, analisados de forma integrada. O zoneamento agroecológico é um destes modelos conservacionistas e busca a definição de zonas homogneas com base na combinação das características dos solos, da paisagem e do clima. O Município de Bom Jardim encontra-se em área de relevo movimentado e a atividade agropecuária desenvolvida em sua maioria por pequenos produtores encontra-se sobre terras com elevada vulnerabilidade ambiental. Este trabalho tem por objetivo realizar o zoneamento agroecológico de Bom Jardim, RJ, em escala regional, para fins de ordenamento territorial. As zonas agroecológicas recomendadas para o uso com lavouras (intensivas e semi-intensivas) somam 14,3 km2, o que equivale a aproximadamente 3,7% da área total do município. As zonas agroecológicas recomendadas para o uso com pastagens e pastagens especiais somam 7,7 km2, o equivalente a 2% da área total do município. As áreas identificadas como zonas recomendadas para conservação/preservação dos recursos naturais somam 362 km2, as quais constituem áreas de alta fragilidade ambiental e/ou apresentam restrições legais de uso, como as áreas de preservação permanente.