905 resultados para Acceleration skewness
Resumo:
The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.
Resumo:
The present study shows the development, simulation and actual implementation of a closed-loop controller based on fuzzy logic that is able to regulate and standardize the mass flow of a helical fertilizer applicator. The control algorithm was developed using MATLAB's Fuzzy Logic Toolbox. Both open and closed-loop simulations of the controller were performed in MATLAB's Simulink environment. The instantaneous deviation of the mass flow from the set point (SP), its derivative, the equipment´s translation velocity and acceleration were all used as input signals for the controller, whereas the voltage of the applicator's DC electric motor (DCEM) was driven by the controller as output signal. Calibration and validation of the rules and membership functions of the fuzzy logic were accomplished in the computer simulation phase, taking into account the system's response to SP changes. The mass flow variation coefficient, measured in experimental tests, ranged from 6.32 to 13.18%. The steady state error fell between -0.72 and 0.13g s-1 and the recorded average rise time of the system was 0.38 s. The implemented controller was able to both damp the oscillations in mass flow that are characteristic of helical fertilizer applicators, and to effectively respond to SP variations.
Resumo:
Brazil is the world’s largest orange producer; however, part of this production is lost during postharvest. This loss can be minimized by controlling incidence of physical damage throughout the harvest and loading operations. Impacts can negatively modify quantitative and qualitative fruits aspects. The main goal of this study was to measure the impact magnitude in two types of harvest (manual and detachment) and during all steps from picking into bags until loading for transport to the processing industry and additionally evaluating, in laboratory, the physico-chemical quality of the fruit subjected to various impacts, similar to those found in the field. In order to evaluate the impact magnitude, an instrumented sphere was used (760 mm, Techmark, Inc, USA). The following physico-chemical parameters were evaluated during 6-days of storage: weight loss, soluble solids contents, titratable acidity, ascorbic acid content, pH, firmness and peel color. The greatest impacts were observed during harvest, during the detachment practice, and when loading and unloading from bulk storage, with average acceleration values between 249.5 and 531.52G. The impact incidence in oranges were responsible for reducing the soluble solids, titratable acidity, ascorbic acid and weight by to 5.5%; 8.7%; 4.6% and 0.5%, respectively, compared to the control. Impacts during harvest and the various pre-industry manipulation steps must be controlled as they interfere in postharvest quality and physiology of ‘Valência’ oranges.
Resumo:
Tämä työ on osa Integrated Serial and Parallel Hybrid Drives in Working Machines projektia. Työssä simuloidaan ja lasketaan energian palautuspotentiaalia raskaassa liikkuvassa työkoneessa. Työn alussa aihetta käsitellään yleisesti kirjallisuuskatsauksen muodossa. Tukkikurottaja valittiin simulointien ja laskennan kohteeksi. Työssä suoritettiin alustavat simuloinnit, joiden tarkoituksena oli varmistua, että palautettavaa energiaa on olemassa. Tulokset osoittavat, että energian palauttaminen on mahdollista. Mittaukset ovat osa työtä. Mitatut muuttujat ovat paineet ja pituudet hydraulisylintereistä, rungon kiihtyvyys, sekä kaikki CAN-väylään kytkettyjen antureiden mittaustiedot. Lopulliset simuloinnit perustuvat mitattuihin työkiertoihin. Työsylintereiden ja ajovoimansiirron tehotarpeet valittiin simulointien tarkasteltaviksi mittaussuureiksi. Mahdollinen palautettavan energian määrä eri työkierroissa on työn lopputulos. Tulokset osoittavat, että palautettavan energian määrä on talteenoton kannalta riittävä.
Resumo:
There is wide interest in new business creation especially in high-growth companies because of the transition from the industrial era to the information era. Previously traditional industry has been a major employer but now industrial employment is moving to countries that provide cheaper labor, and therefore Western countries are reaching for new solutions that could safeguard the current stage of economic wealth. High-growth companies are seen as one opportunity. The aim of this study is to clarify the success factors of accelerators. Acceleration is a relatively new phenomenon, which has its roots in the venture capital industry. Their fundamental goal is to create high-growth companies that have global market potential. Accelerators could be defined as venture-to-capital actors that bridge the competence and equity gaps of startups. The access to the knowledge and funding are the prerequisites of the existence of accelerator. This research was qualitative and based on 18 semi-structured or thematic interviews with 15 accelerators and topic related professionals from Finland, Estonia, Denmark, Germany, the UK and the US. The data was analyzed with a content analysis approach. The study revealed three fundamental preconditions for success. First, the deep business knowledge and access to relevant networks is a foundation and fundamental precondition. Second, the ability to transfer knowledge from the accelerator to startups has significant importance. And third, the dynamics of an accelerator organization can restrict the use of business knowledge. Moreover, the attraction of an accelerator and team selection are crucial issues for success.
Resumo:
Abstract The aim of this study was to evaluate the effect of phytogenic additives and glutamine plus glutamic acid, associated or not, on histomorphometry of bursa of Fabricius and small intestine, oocyst count and lesion scores, and carbon turnover of duodenal mucosa of broiler chickens infected with Eimeria acervulina. A total of 450 male broiler chickens was distributed into a completely randomized design with six treatments and three replications. Treatments consisted of control diet (CD); CD + coccidiosis vaccine; CD + antibiotic performance enhancers and anticoccidial (APE/AC); CD + glutamine and glutamic acid (Gln/Glu); CD + phytogenic additives (PA); CD + Gln/Glu + PA. Birds on treatment CD + vaccine were vaccinated via drinking water at three days of age against coccidiosis. At 16 days of age all birds of all treatments were inoculated orally and individually with 500,000 oocysts of Eimeria acervulina. There was no treatment effect on lesion score in the intestinal epithelium of birds. The smaller number of excreted oocysts was observed in groups of birds fed diets containing APE/AC and PA. Were observed better results of villus height and crypt depth for duodenum and ileum of birds of treatments containing Gln/Glu at 7 days of age, and Gln/Glu and PA at 21 days of age. Higher percentage of cortical area from bursa follicles was observed in birds fed diets supplemented with Gln/Glu and PA at 7, 14 and 21 days of age. Increased turnover of intestinal mucosa was observed in treatments containing Gln/Glu, indicating acceleration in development and regeneration of damaged tissue. Glutamine plus glutamic acid and phytogenic additives can provide improvements to structure, and thus to intestinal function, as well as to better immune response against the infectious challenges. Phytogenic additives can be used for coccidiosis control of broiler chickens where the use of antibiotic performance enhancers and anticoccidials is prohibited.
Resumo:
Products developed at industries, institutes and research centers are expected to have high level of quality and performance, having a minimum waste, which require efficient and robust tools to numerically simulate stringent project conditions with great reliability. In this context, Computational Fluid Dynamics (CFD) plays an important role and the present work shows two numerical algorithms that are used in the CFD community to solve the Euler and Navier-Stokes equations applied to typical aerospace and aeronautical problems. Particularly, unstructured discretization of the spatial domain has gained special attention by the international community due to its ease in discretizing complex spatial domains. This work has the main objective of illustrating some advantages and disadvantages of numerical algorithms using structured and unstructured spatial discretization of the flow governing equations. Numerical methods include a finite volume formulation and the Euler and Navier-Stokes equations are applied to solve a transonic nozzle problem, a low supersonic airfoil problem and a hypersonic inlet problem. In a structured context, these problems are solved using MacCormacks implicit algorithm with Steger and Warmings flux vector splitting technique, while, in an unstructured context, Jameson and Mavriplis explicit algorithm is used. Convergence acceleration is obtained using a spatially variable time stepping procedure.
Resumo:
This work presents recent results concerning a design methodology used to estimate the positioning deviation for a gantry (Cartesian) manipulator, related mainly to structural elastic deformation of components during operational conditions. The case-study manipulator is classified as gantry type and its basic dimensions are 1,53m x 0,97m x 1,38m. The dimensions used for the calculation of effective workspace due to end-effector path displacement are: 1m x 0,5m x 0,5m. The manipulator is composed by four basic modules defined as module X, module Y, module Z and terminal arm, where is connected the end-effector. Each module controlled axis performs a linear-parabolic positioning movement. The planning path algorithm has the maximum velocity and the total distance as input parameters for a given task. The acceleration and deceleration times are the same. Denavit-Hartemberg parameterization method is used in the manipulator kinematics model. The gantry manipulator can be modeled as four rigid bodies with three degrees-of-freedom in translational movements, connected as an open kinematics chain. Dynamic analysis were performed considering inertial parameters specification such as component mass, inertia and center of gravity position of each module. These parameters are essential for a correct manipulator dynamic modelling, due to multiple possibilities of motion and manipulation of objects with different masses. The dynamic analysis consists of a mathematical modelling of the static and dynamic interactions among the modules. The computation of the structural deformations uses the finite element method (FEM).
Resumo:
An Autonomous Mobile Robot battery driven, with two traction wheels and a steering wheel is being developed. This Robot central control is regulated by an IPC, which controls every function of security, steering, positioning localization and driving. Each traction wheel is operated by a DC motor with independent control system. This system is made up of a chopper, an encoder and a microcomputer. The IPC transmits the velocity values and acceleration ramp references to the PIC microcontrollers. As each traction wheel control is independent, it's possible to obtain different speed values for each wheel. This process facilities the direction and drive changes. Two different strategies for speed velocity control were implemented; one works with PID, and the other with fuzzy logic. There were no changes in circuits and feedback control, except for the PIC microcontroller software. Comparing the two different speed control strategies the results were equivalent. However, in relation to the development and implementation of these strategies, the difficulties were bigger to implement the PID control.
Resumo:
In this paper we present a study of feasibility by using Cassino Parallel Manipulator (CaPaMan) as an earthquake simulator. We propose a suitable formulation to simulate the frequency, amplitude and acceleration magnitude of seismic motion by means of the movable platform motion by giving a suitable input motion. In this paper we have reported numerical simulations that simulate the three principal earthquake types for a seismic motion: one at the epicenter (having a vertical motion), another far from the epicenter (with the motion on a horizontal plane), and a combined general motion (with a vertical and horizontal motion).
Characterization of Leaf-Type Ferredoxin-NADP+ Oxidoreductase (FNR) Isoforms in Arabidopsis thaliana
Resumo:
Life on earth is based on sunlight, which is captured in chemical form by photosynthetic reactions. In the chloroplasts of plants, light reactions of photosynthesis take place at thylakoid membranes, whereas carbon assimilation reactions occur in the soluble stroma. The products of linear electron transfer (LET), highly-energetic ATP molecules, and reducing power in the form of NADPH molecules, are further used in the fixation of inorganic CO2 molecules into organic sugars. Ferredoxin-NADP+ oxidoreductase (FNR) catalyzes the last of the light reactions by transferring electrons from ferredoxin (FD) to NADP+. In addition to LET, FNR has been suggested to play a role in cyclic electron transfer (CET), which produces ATP without the accumulation of reducing equivalents. CET is proposed to occur via two putative routes, the PGR5- route and the NDH-route. In this thesis, the leaf-type FNR (LFNR) isoforms LFNR1 and LFNR2 of a model organism, Arabidopsis thaliana, were characterized. The physiological roles of LFNRs were investigated using single and double mutant plants. The viability of the single mutants indicates functionality of both isoforms, with neither appearing to play a specific role in CET. The more severe phenotype of low-temperature adapted fnr2 plants compared to both wild-type (WT) and fnr1 plants suggests a specific role for LFNR2 under unfavorable growth conditions. The more severe phenotype of the fnr1 x fnr2 (F1 generation) plants compared to single mutants reflects down-regulated photosynthetic capacity, whereas slightly higher excitation pressure indicates mild over-excitation of electron transfer chain (ETC). However, induction of CET and various photoprotective mechanisms enable adaptation of fnr1 x fnr2 plants to scarcity of LFNR. The fnr1 fnr2 plants (F2 generation), without detectable levels of LFNR, were viable only under heterotrophic conditions. Moreover, drought stress induced acceleration of the rate of P700 + re-reduction in darkness was accompanied by a concomitant up-regulation of the PGR5-route specific components, PGR5 and PGRL1, demonstrating the induction of CET via the PGR5-route. The up-regulation of relative transcriptional expression of the FD1 gene indicates that the FD1 isoform may have a specific function in CET, while no such role could be defined for either of the LFNR isoforms. Both the membrane-bound and soluble LFNR1 and LFNR2 each appear as two distinct spots after 2D-PAGE with different isoelectric points (pIs), indicating the existence of post-translational modifications (PTMs) which do not determine the membrane attachment of LFNR. The possibility of phosphorylation and glycosylation PTMs were excluded, but all four LFNR forms were shown to contain acetylated lysine residues as well as alternative N-termini. N-terminal acetylation was shown to shift the pI of both LFNRs to be more acidic. In addition, all four LFNR forms were demonstrated to interact both with FD1 and FD2 in vitro
Resumo:
Työssä tutkittiin anturointimahdollisuuksia havaita ammutun luodin osuminen maalitauluun ja mitata helposti saatavilla olevia passiivisia antureita. Luodin osuminen maalitauluun luo muutoksia maalilaitteessa ja maalitaulussa. Nämä voidaan havaita kiihtyvyytenä, äänenä tai muutoksena maalitaulussa.
Resumo:
Parissa kymmenessä vuodessa on tapahtunut paljon muutoksia. Neuvostoliitto hajosi, Suomen talousrakenne muuttui, globalisaatio kiihtyy kasvavalla vauhdilla, viennin kuljetusmuotoihin on tullut muutoksia, mutta yritystoiminta edellyttää pysymistä ajan tasalla. Tässä diplomityössä tutkitaan myynti- ja toimituskanavien valintoja EU:sta Venäjälle tapahtuvissa viennissä. Työssä käytetään Venäjältä saatavaa tietoa, sillä suurimmat lopputulokseen vaikuttavat kuljetuskustannukset kuten kuljetus, tavaran käsittely ja välivarastointi syntyvät Venäjän puolella. Vienti EU:sta Venäjälle on kasvanut koko ajan tasaisella vauhdilla ja muodostanut samalla tavanomaisesta poikkeavia kuljetusmenetelmiä. Suomessa pk-yrityksillä ei ole resursseja perehtyä aiheeseen, mutta koko ajan yhä useammat yritykset harjoittavat kauppaa ohjaamalla tavaran valmistajalta suoraan vastaanottajalle. Silloin tavara on lähetettävä esimerkiksi eurooppalaiselta keskusvarastolta Venäjälle, jolloin säästytään turhista kuljetuksista Suomen kautta. Työssä tutkitaan yleisimpiä käytössä olevia kuljetusmuotoja, rautatiekuljetuksen potentiaalia ja maantiekuljetuksen mahdollisuuksia. Siinä analysoidaan logistisen teorian pääpiirteitä, yritystoiminnan logistisia prosesseja samoin kuin EU:n vientisäädöksiä ja EU:sta lähtevien vientikuljetuksien organisointiongelmia. Käytössäni on logististen prosessien rakenteen metodologia. Työssä suoritetaan vientiprosessin tutkimus ja esitetään suoritetun tutkimuksen tulokset. Tuloksien pohjalta tehdään päätökset.
Resumo:
ABSTRACTGlyphosate has significant effects on the growth and development of plants when in underdoses. This work was developed to verify the effect of the application of glyphosate in underdoses in lignin synthesis and consequently decomposition of maize stover. Two experiments were conducted; the first one in a greenhouse for underdoses adjustments and the second one in the production area. The experimental design of the first trial was completely randomized with four replications. The treatments consisted in the application of the underdoses: 0, 25, 50 and 100 g ha-1 of glyphosate. In the production area, the experimental design was a randomized block with four replications, in underdoses: 0, 12.5, 25 and 50 g ha-1. The results were submitted to analysis of variance and regression. The underdoses of 25 g a.e. ha-1in a greenhouse promoted 36% increase in productivity of stover, in addition to increasing the lignin content in 16%, with no change in the unwanted growth of maize plants. In the production area, the concentration of 12.5 g a.e. ha-1 of glyphosate reduced the lignin content and the other underdoses have not changed this feature in maize plants. None of the underdoses affected the height and biomass produced by the maize plants. The highest underdose tested promoted acceleration in the decomposition of maize stover.
Resumo:
Intracellular substances released into the medium during rehydration of dry yeast cells can significantly improve the quality of a synthetic medium. Acceleration of yeast growth in this medium and increased yield of biomass are observed simultaneously. The change in the molecular arrangement of intracellular membranes as a result of the strong dehydration of live organisms is a negative phenomenon that reduces the level of cell viability. However, this phenomenon also represents an adaptive mechanism which facilitates the maintenance of population viability as a whole under extreme environmental conditions