966 resultados para Illumination globale
Resumo:
A novel phase-step calibration technique is presented on the basis of a two-run-times-two-frame phase-shift method. First the symmetry factor M is defined to describe the distribution property of the distorted phase due to phase-shifter miscalibration; then the phase-step calibration technique, in which two sets of two interferograms with a straight fringe pattern are recorded and the phase step is obtained by calculating M of the wrapped phase map, is developed. With this technique, a good mirror is required, but no uniform illumination is needed and no complex mathematical operation is involved. This technique can be carried out in situ and is applicable to any phase shifter, whether linear or nonlinear. (c) 2006 Optical Society of America.
Resumo:
研究了照明光瞳非对称性对光刻成像质量的影响。通过PROLITH软件计算了环形与四极照明条件下,光瞳非对称性对图形位置偏移量、曝光图形内水平线条与垂直线条的宽度差、曝光图形上密集线条与孤立线条之间线宽偏差的影响。研究结果表明,光瞳非对称性主要影响曝光图形的位置偏移量,光瞳非对称性引起的图形位置偏移量与光瞳非对称性的大小成线性关系。根据套刻精度的误差分配原则,计算得到光瞳非对称性的容限为5%。
Resumo:
A quantitative study has been performed on the stability of GaAs surfaces in a 0.10 M K2Se-0.01 M K2Se2 aqueous solution. In this electrolyte, n-type GaAs electrodes displayed significant photocorrosion in competition with faradaic charge transfer to Se2-. Chemisorption of group VIIIB metal ions onto the GaAs surfaces yielded improved current-voltage behavior of the GaAs photoanodes, and also resulted in a significant reduction in photocorrosion. This behavior implies that the chemisorbed metal ions act to increase the rate of hole transfer to the Se2- species. Related experiments on n-GaAs, pGaAs, and Sn-doped In2O3 electrodes in Te2-/- aqueous solutions have also been performed.
The majority carrier (electrons) transfer rate constant at a highly doped n+-Si/Co(Cp)2Cl-methanol junction has been measured directly using the chronoamperometry electrochemical technique. The reduction reaction rate of Co(Cp)2+ was 0.03 cm-s-1 at the Si electrode, and was more than 100 times slower than at a hanging mercury electrode. The slower rate was attributed to the smaller optical and static dielectric constants, and the lower density of electrons of the semiconductor. The experimental results were compared to the Marcus theory of charge transfer.
The unique properties of high purity Si/liquid junctions have been investigated under illumination conditions in which the photogenerated carrier concentration exceeds the dopant concentration. Under these high injection conditions, negligible electric fields exist at the semiconductor/liquid interface, and carrier motion is driven by diffusion. Studies of the current-voltage properties of the Si in methanol solutions containing various redox couples suggested that high efficiency photoelectrochemical cells could be established through selective collection of carriers at the semiconductor/liquid junction. The quasi-Fermi levels of electrons and holes were measured directly against the solution potential. Steady-state and transient photovoltage measurements, and theoretical modeliug of the carrier transport, generation, and recombination dynamics indicated that the quasi-Fermi levels were flat across the semiconductor sample. The recombination velocities at the Si/liquid junctions have also been measured, and were shown to vary with the solution potential following the Shockley-Read-Hall theory on recombination.
Resumo:
The layout of a typical optical microscope has remained effectively unchanged over the past century. Besides the widespread adoption of digital focal plane arrays, relatively few innovations have helped improve standard imaging with bright-field microscopes. This thesis presents a new microscope imaging method, termed Fourier ptychography, which uses an LED to provide variable sample illumination and post-processing algorithms to recover useful sample information. Examples include increasing the resolution of megapixel-scale images to one gigapixel, measuring quantitative phase, achieving oil-immersion quality resolution without an immersion medium, and recovering complex three dimensional sample structure.
Resumo:
Experimental investigation of Talbot self-imaging effect of an amplitude grating under illumination of femtosecond laser pulse -- the FemtoTalbot effect is reported. Theoretical analyzed results show that Talbot images under illumination of femtosecond laser pulses are not the same as that under continuous wave illumination. Experimental results are in good agreement with the theoretical analysis. We believe that the experimental investigation of the FemtoTalbot effect is highly interesting for the enormous potential applications of Talbot effect.
Resumo:
Photovoltaic energy conversion represents a economically viable technology for realizing collection of the largest energy resource known to the Earth -- the sun. Energy conversion efficiency is the most leveraging factor in the price of energy derived from this process. This thesis focuses on two routes for high efficiency, low cost devices: first, to use Group IV semiconductor alloy wire array bottom cells and epitaxially grown Group III-V compound semiconductor alloy top cells in a tandem configuration, and second, GaP growth on planar Si for heterojunction and tandem cell applications.
Metal catalyzed vapor-liquid-solid grown microwire arrays are an intriguing alternative for wafer-free Si and SiGe materials which can be removed as flexible membranes. Selected area Cu-catalyzed vapor-liquid solid growth of SiGe microwires is achieved using chlorosilane and chlorogermane precursors. The composition can be tuned up to 12% Ge with a simultaneous decrease in the growth rate from 7 to 1 μm/min-1. Significant changes to the morphology were observed, including tapering and faceting on the sidewalls and along the lengths of the wires. Characterization of axial and radial cross sections with transmission electron microscopy revealed no evidence of defects at facet corners and edges, and the tapering is shown to be due to in-situ removal of catalyst material during growth. X-ray diffraction and transmission electron microscopy reveal a Ge-rich crystal at the tip of the wires, strongly suggesting that the Ge incorporation is limited by the crystallization rate.
Tandem Ga1-xInxP/Si microwire array solar cells are a route towards a high efficiency, low cost, flexible, wafer-free solar technology. Realizing tandem Group III-V compound semiconductor/Si wire array devices requires optimization of materials growth and device performance. GaP and Ga1-xInxP layers were grown heteroepitaxially with metalorganic chemical vapor deposition on Si microwire array substrates. The layer morphology and crystalline quality have been studied with scanning electron microscopy and transmission electron microscopy, and they provide a baseline for the growth and characterization of a full device stack. Ultimately, the complexity of the substrates and the prevalence of defects resulted in material without detectable photoluminescence, unsuitable for optoelectronic applications.
Coupled full-field optical and device physics simulations of a Ga0.51In0.49P/Si wire array tandem are used to predict device performance. A 500 nm thick, highly doped "buffer" layer between the bottom cell and tunnel junction is assumed to harbor a high density of lattice mismatch and heteroepitaxial defects. Under simulated AM1.5G illumination, the device structure explored in this work has a simulated efficiency of 23.84% with realistic top cell SRH lifetimes and surface recombination velocities. The relative insensitivity to surface recombination is likely due to optical generation further away from the free surfaces and interfaces of the device structure.
Finally, GaP has been grown free of antiphase domains on Si (112) oriented substrates using metalorganic chemical vapor deposition. Low temperature pulsed nucleation is followed by high temperature continuous growth, yielding smooth, specular thin films. Atomic force microscopy topography mapping showed very smooth surfaces (4-6 Å RMS roughness) with small depressions in the surface. Thin films (~ 50 nm) were pseudomorphic, as confirmed by high resolution x-ray diffraction reciprocal space mapping, and 200 nm thick films showed full relaxation. Transmission electron microscopy showed no evidence of antiphase domain formation, but there is a population of microtwin and stacking fault defects.
Resumo:
In order to realize super-resolution in the 4Pi-confocal systems, the annular binary pure phase filter is designed with the vector diffraction theory. The relations between the super-resolved parameters, such as S, G(T), G(A), and the radial position theta(i) of each zone, are obtained. For simple illumination of the design procedure, three-zone binary pure phase filters are studied, and several numerical simulation results show that in the 4Pi-confocal system with the properly designed binary pure phase filter the super-resolution can be realized with low sidelobes.
Resumo:
本文讨论了光学光刻中的离轴照明技术。主要从改善光刻分辨率、增大焦深、提高空间像对比度等方面对离轴照明与传统照明作了比较,并用Prolith仿真软件进行了模拟分析。研究表明,离轴照明是一种很有效的光刻分辨率增强技术。
Resumo:
A laser beam at wavelength 647 nm is focused on a sample of 5 mol% MgO-doped lithium niobate crystal for domain inversion by a conventional external electric field. In this case, a reduction of 36% in the electric field required for domain nucleation (nucleation field) is observed. To the best of our knowledge, it is the longest wavelength reported for laser-induced domain inversion. This extends the spectrum of laser inducing, and the experimental results are helpful to understand the nucleation dynamics under laser illumination. The dependence of nucleation fields on intensities of laser beams is analysed in experiments.
Resumo:
介绍了65 nm和45 nm节点国际主流光刻机的最新研发进展,重点分析了目前提高光刻机性能的关键技术,讨论了目前各公司的主流机型及其性能参数,最后简要介绍了下一代光刻技术的研究进展。
Resumo:
Optical Coherence Tomography(OCT) is a popular, rapidly growing imaging technique with an increasing number of bio-medical applications due to its noninvasive nature. However, there are three major challenges in understanding and improving an OCT system: (1) Obtaining an OCT image is not easy. It either takes a real medical experiment or requires days of computer simulation. Without much data, it is difficult to study the physical processes underlying OCT imaging of different objects simply because there aren't many imaged objects. (2) Interpretation of an OCT image is also hard. This challenge is more profound than it appears. For instance, it would require a trained expert to tell from an OCT image of human skin whether there is a lesion or not. This is expensive in its own right, but even the expert cannot be sure about the exact size of the lesion or the width of the various skin layers. The take-away message is that analyzing an OCT image even from a high level would usually require a trained expert, and pixel-level interpretation is simply unrealistic. The reason is simple: we have OCT images but not their underlying ground-truth structure, so there is nothing to learn from. (3) The imaging depth of OCT is very limited (millimeter or sub-millimeter on human tissues). While OCT utilizes infrared light for illumination to stay noninvasive, the downside of this is that photons at such long wavelengths can only penetrate a limited depth into the tissue before getting back-scattered. To image a particular region of a tissue, photons first need to reach that region. As a result, OCT signals from deeper regions of the tissue are both weak (since few photons reached there) and distorted (due to multiple scatterings of the contributing photons). This fact alone makes OCT images very hard to interpret.
This thesis addresses the above challenges by successfully developing an advanced Monte Carlo simulation platform which is 10000 times faster than the state-of-the-art simulator in the literature, bringing down the simulation time from 360 hours to a single minute. This powerful simulation tool not only enables us to efficiently generate as many OCT images of objects with arbitrary structure and shape as we want on a common desktop computer, but it also provides us the underlying ground-truth of the simulated images at the same time because we dictate them at the beginning of the simulation. This is one of the key contributions of this thesis. What allows us to build such a powerful simulation tool includes a thorough understanding of the signal formation process, clever implementation of the importance sampling/photon splitting procedure, efficient use of a voxel-based mesh system in determining photon-mesh interception, and a parallel computation of different A-scans that consist a full OCT image, among other programming and mathematical tricks, which will be explained in detail later in the thesis.
Next we aim at the inverse problem: given an OCT image, predict/reconstruct its ground-truth structure on a pixel level. By solving this problem we would be able to interpret an OCT image completely and precisely without the help from a trained expert. It turns out that we can do much better. For simple structures we are able to reconstruct the ground-truth of an OCT image more than 98% correctly, and for more complicated structures (e.g., a multi-layered brain structure) we are looking at 93%. We achieved this through extensive uses of Machine Learning. The success of the Monte Carlo simulation already puts us in a great position by providing us with a great deal of data (effectively unlimited), in the form of (image, truth) pairs. Through a transformation of the high-dimensional response variable, we convert the learning task into a multi-output multi-class classification problem and a multi-output regression problem. We then build a hierarchy architecture of machine learning models (committee of experts) and train different parts of the architecture with specifically designed data sets. In prediction, an unseen OCT image first goes through a classification model to determine its structure (e.g., the number and the types of layers present in the image); then the image is handed to a regression model that is trained specifically for that particular structure to predict the length of the different layers and by doing so reconstruct the ground-truth of the image. We also demonstrate that ideas from Deep Learning can be useful to further improve the performance.
It is worth pointing out that solving the inverse problem automatically improves the imaging depth, since previously the lower half of an OCT image (i.e., greater depth) can be hardly seen but now becomes fully resolved. Interestingly, although OCT signals consisting the lower half of the image are weak, messy, and uninterpretable to human eyes, they still carry enough information which when fed into a well-trained machine learning model spits out precisely the true structure of the object being imaged. This is just another case where Artificial Intelligence (AI) outperforms human. To the best knowledge of the author, this thesis is not only a success but also the first attempt to reconstruct an OCT image at a pixel level. To even give a try on this kind of task, it would require fully annotated OCT images and a lot of them (hundreds or even thousands). This is clearly impossible without a powerful simulation tool like the one developed in this thesis.
Resumo:
Inverse symmetric Dammann grating is a special grating, whose transition points are reflection symmetric about the midpoint with inverse phase offset in one period. It can produce even-numbered or odd-numbered array illumination when the phase modulations are pi or a specific value. Numerical solutions optimized by the steepest-descent algorithm for binary phase and multilevel phases with splitting ratio from I x 4 to 1 x 14 are given. Fabrication of 1 x 6 array without the zero-order intensity and 1 x 7 array with the zero-order intensity are made from the same amplitude mask. A 6 x 6 output without the crossed zero-orders was achieved by crossing two one-dimensional 1 x 6 inverse symmetric Dammann gratings. This grating may have potential value for practical applications. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In the present paper, we propose a novel method for measuring the even aberrations of lithographic projection optics by use of optimized phase-shifting marks on the test mask. The line/space ratio of the phase-shifting marks is optimized to obtain the maximum sensitivities of Zernike coefficients corresponding to even aberrations. Spherical aberration and astigmatism can be calculated from the focus shifts of phase-shifting gratings oriented at 0 degrees, 45 degrees, 90 degrees and 135 degrees at multiple illumination settings. The PROLITH simulation results show that, the measurement accuracy of spherical aberration and astigmatism obviously increase, after the optimization of the measurement mark. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Dosidicus gigas is a large pelagic cephalopod of the eastern Pacific that has recently undergone an unexpected, significant range expansion up the coast of North America. The impact that such a range expansion is expected to have on local fisheries and marine ecosystems has motivated a thorough study of this top predator, a squid whose lifestyle has been quite mysterious until recently. Unfortunately, Dosidicus spends daylight hours at depths prohibitive to making observations without significant artificial interference. Observations of this squid‟s natural behaviors have thus far been considerably limited by the bright illumination and loud noises of remotely-operated-vehicles, or else the presence of humans from boats or with SCUBA. However, recent technological innovations have allowed for observations to take place in the absence of humans, or significant human intrusion, through the use of animal-borne devices such as National Geographic‟s CRITTERCAM. Utilizing the advanced video recording and data logging technology of this device, this study seeks to characterize unknown components of Dosidicus gigas behavior at depth. Data from two successful CRITTERCAM deployments reveal an assortment of new observations concerning Dosidicus lifestyle. Tri-axial accelerometers enable a confident description of Dosidicus orientation during ascents, descents, and depth maintenance behavior - previously not possible with simple depth tags. Video documentation of intraspecific interactions between Dosidicus permits the identification of ten chromatic components, a previously undescribed basal chromatic behavior, and multiple distinct body postures. And finally, based on visualizations of spermatophore release by D. gigas and repetitive behavior patterns between squid pairs, this thesis proposes the existence of a new mating behavior in Dosidicus. This study intends to provide the first glimpse into the natural behavior of Dosidicus, establishing the groundwork for a comprehensive ethogram to be supported with data from future CRITTERCAM deployments. Cataloguing these behaviors will be useful in accounting for Dosidicus‟ current range expansion in the northeast Pacific, as well as to inform public interest in the impacts this expansion will have on local fisheries and marine ecosystems.
Resumo:
结合列阵透镜的透过率分析了其后的光场分布。列阵透镜由多个列阵元拼接而成,用以改善主透镜焦点附近能量分布的均匀性。列阵透镜在提高辐照均匀性的同时,给能量测量带来了不利的影响。这是由于经过列阵元的相邻子光束会产生干涉,干涉条纹处的激光能量密度和功率密度相应都大为增加,其数值在干涉区域中心处能上升到原来的4倍。更高的能量密度和功率密度对能量计提出了更苛刻的要求。在没有采取适当措施的时候使用,就会损坏能量计。