964 resultados para Explicit Expressions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

SELECTOR is a software package for studying the evolution of multiallelic genes under balancing or positive selection while simulating complex evolutionary scenarios that integrate demographic growth and migration in a spatially explicit population framework. Parameters can be varied both in space and time to account for geographical, environmental, and cultural heterogeneity. SELECTOR can be used within an approximate Bayesian computation estimation framework. We first describe the principles of SELECTOR and validate the algorithms by comparing its outputs for simple models with theoretical expectations. Then, we show how it can be used to investigate genetic differentiation of loci under balancing selection in interconnected demes with spatially heterogeneous gene flow. We identify situations in which balancing selection reduces genetic differentiation between population groups compared with neutrality and explain conflicting outcomes observed for human leukocyte antigen loci. These results and three previously published applications demonstrate that SELECTOR is efficient and robust for building insight into human settlement history and evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article analyses the context of production and local situations of appropriation and resignification related to the folk song “Fire on Animaná” as well as the request and mobilization (“The animanazo”) provoked by this song in order to examine different mechanisms and foundations by which a population connect with an event from its community past, identifying with this and taking it in a specific way. In this article we combine discourse analysis of the song and of interviews to participants in this event with the reconstruction —through ethnographic observation— of how to use this song.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we focus on a Riemann–Hilbert boundary value problem (BVP) with a constant coefficients for the poly-Hardy space on the real unit ball in higher dimensions. We first discuss the boundary behaviour of functions in the poly-Hardy class. Then we construct the Schwarz kernel and the higher order Schwarz operator to study Riemann–Hilbert BVPs over the unit ball for the poly- Hardy class. Finally, we obtain explicit integral expressions for their solutions. As a special case, monogenic signals as elements in the Hardy space over the unit sphere will be reconstructed in the case of boundary data given in terms of functions having values in a Clifford subalgebra. Such monogenic signals represent the generalization of analytic signals as elements of the Hardy space over the unit circle of the complex plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the temperature of a pilot-scale batch reaction system is modeled towards the design of a controller based on the explicit model predictive control (EMPC) strategy -- Some mathematical models are developed from experimental data to describe the system behavior -- The simplest, yet reliable, model obtained is a (1,1,1)-order ARX polynomial model for which the mentioned EMPC controller has been designed -- The resultant controller has a reduced mathematical complexity and, according to the successful results obtained in simulations, will be used directly on the real control system in a next stage of the entire experimental framework

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Una detallada descripción de la dinámica de bajas energías del entrelazamiento multipartito es proporcionada para sistemas armónicos en una gran variedad de escenarios disipativos. Sin hacer ninguna aproximación central, esta descripción yace principalmente sobre un conjunto razonable de hipótesis acerca del entorno e interacción entorno-sistema, ambas consistente con un análisis lineal de la dinámica disipativa. En la primera parte se deriva un criterio de inseparabilidad capaz de detectar el entrelazamiento k-partito de una extensa clase de estados gausianos y no-gausianos en sistemas de variable continua. Este criterio se emplea para monitorizar la dinámica transitiva del entrelazamiento, mostrando que los estados no-gausianos pueden ser tan robustos frente a los efectos disipativos como los gausianos. Especial atención se dedicada a la dinámica estacionaria del entrelazamiento entre tres osciladores interaccionando con el mismo entorno o diferentes entornos a distintas temperaturas. Este estudio contribuye a dilucidar el papel de las correlaciones cuánticas en el comportamiento de la corrientes energéticas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Différents courants théoriques, principalement les courants collaboratifs et égocentriques, ont été élaborés pour expliquer l’adaptation de la production verbale lors d’une interaction avec une autre personne. Toutefois, ces courants s’opposent concernant la considération des besoins réels de l’interlocuteur dans la planification initiale des productions verbales. Ce mémoire comprend deux expérimentations réalisées sous un même devis expérimental. Une tâche a été développée pour départager différents types d’adaptation et sources d’information possibles. Les résultats suggèrent que généralement, les personnes produisent de l’information qu’elles-mêmes connaissent et rajoutent de l’information dans un deuxième temps, lorsque nécessaire. Toutefois, lorsqu’elles rencontrent une personne aux connaissances atypiquement restreintes, elles peuvent prendre en considération le vrai niveau de connaissance et produire les informations les plus utiles. Les résultats suggèrent donc que les personnes sont collaboratives pour produire leurs expressions référentielles et qu’elles s’ajustent au réel niveau de connaissances tôt dans l’interaction, lorsqu’elles peuvent utiliser une heuristique de connaissances prototypiques. Avec un interlocuteur aux connaissances atypiquement restreintes, elles produisent cependant des références ciblées, mais spécifiquement lorsqu’il est rencontré avant un interlocuteur prototypique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Scheduling problems are generally NP-hard combinatorial problems, and a lot of research has been done to solve these problems heuristically. However, most of the previous approaches are problem-specific and research into the development of a general scheduling algorithm is still in its infancy. Mimicking the natural evolutionary process of the survival of the fittest, Genetic Algorithms (GAs) have attracted much attention in solving difficult scheduling problems in recent years. Some obstacles exist when using GAs: there is no canonical mechanism to deal with constraints, which are commonly met in most real-world scheduling problems, and small changes to a solution are difficult. To overcome both difficulties, indirect approaches have been presented (in [1] and [2]) for nurse scheduling and driver scheduling, where GAs are used by mapping the solution space, and separate decoding routines then build solutions to the original problem. In our previous indirect GAs, learning is implicit and is restricted to the efficient adjustment of weights for a set of rules that are used to construct schedules. The major limitation of those approaches is that they learn in a non-human way: like most existing construction algorithms, once the best weight combination is found, the rules used in the construction process are fixed at each iteration. However, normally a long sequence of moves is needed to construct a schedule and using fixed rules at each move is thus unreasonable and not coherent with human learning processes. When a human scheduler is working, he normally builds a schedule step by step following a set of rules. After much practice, the scheduler gradually masters the knowledge of which solution parts go well with others. He can identify good parts and is aware of the solution quality even if the scheduling process is not completed yet, thus having the ability to finish a schedule by using flexible, rather than fixed, rules. In this research we intend to design more human-like scheduling algorithms, by using ideas derived from Bayesian Optimization Algorithms (BOA) and Learning Classifier Systems (LCS) to implement explicit learning from past solutions. BOA can be applied to learn to identify good partial solutions and to complete them by building a Bayesian network of the joint distribution of solutions [3]. A Bayesian network is a directed acyclic graph with each node corresponding to one variable, and each variable corresponding to individual rule by which a schedule will be constructed step by step. The conditional probabilities are computed according to an initial set of promising solutions. Subsequently, each new instance for each node is generated by using the corresponding conditional probabilities, until values for all nodes have been generated. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the Bayesian network is updated again using the current set of good rule strings. The algorithm thereby tries to explicitly identify and mix promising building blocks. It should be noted that for most scheduling problems the structure of the network model is known and all the variables are fully observed. In this case, the goal of learning is to find the rule values that maximize the likelihood of the training data. Thus learning can amount to 'counting' in the case of multinomial distributions. In the LCS approach, each rule has its strength showing its current usefulness in the system, and this strength is constantly assessed [4]. To implement sophisticated learning based on previous solutions, an improved LCS-based algorithm is designed, which consists of the following three steps. The initialization step is to assign each rule at each stage a constant initial strength. Then rules are selected by using the Roulette Wheel strategy. The next step is to reinforce the strengths of the rules used in the previous solution, keeping the strength of unused rules unchanged. The selection step is to select fitter rules for the next generation. It is envisaged that the LCS part of the algorithm will be used as a hill climber to the BOA algorithm. This is exciting and ambitious research, which might provide the stepping-stone for a new class of scheduling algorithms. Data sets from nurse scheduling and mall problems will be used as test-beds. It is envisaged that once the concept has been proven successful, it will be implemented into general scheduling algorithms. It is also hoped that this research will give some preliminary answers about how to include human-like learning into scheduling algorithms and may therefore be of interest to researchers and practitioners in areas of scheduling and evolutionary computation. References 1. Aickelin, U. and Dowsland, K. (2003) 'Indirect Genetic Algorithm for a Nurse Scheduling Problem', Computer & Operational Research (in print). 2. Li, J. and Kwan, R.S.K. (2003), 'Fuzzy Genetic Algorithm for Driver Scheduling', European Journal of Operational Research 147(2): 334-344. 3. Pelikan, M., Goldberg, D. and Cantu-Paz, E. (1999) 'BOA: The Bayesian Optimization Algorithm', IlliGAL Report No 99003, University of Illinois. 4. Wilson, S. (1994) 'ZCS: A Zeroth-level Classifier System', Evolutionary Computation 2(1), pp 1-18.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Scheduling problems are generally NP-hard combinatorial problems, and a lot of research has been done to solve these problems heuristically. However, most of the previous approaches are problem-specific and research into the development of a general scheduling algorithm is still in its infancy. Mimicking the natural evolutionary process of the survival of the fittest, Genetic Algorithms (GAs) have attracted much attention in solving difficult scheduling problems in recent years. Some obstacles exist when using GAs: there is no canonical mechanism to deal with constraints, which are commonly met in most real-world scheduling problems, and small changes to a solution are difficult. To overcome both difficulties, indirect approaches have been presented (in [1] and [2]) for nurse scheduling and driver scheduling, where GAs are used by mapping the solution space, and separate decoding routines then build solutions to the original problem. In our previous indirect GAs, learning is implicit and is restricted to the efficient adjustment of weights for a set of rules that are used to construct schedules. The major limitation of those approaches is that they learn in a non-human way: like most existing construction algorithms, once the best weight combination is found, the rules used in the construction process are fixed at each iteration. However, normally a long sequence of moves is needed to construct a schedule and using fixed rules at each move is thus unreasonable and not coherent with human learning processes. When a human scheduler is working, he normally builds a schedule step by step following a set of rules. After much practice, the scheduler gradually masters the knowledge of which solution parts go well with others. He can identify good parts and is aware of the solution quality even if the scheduling process is not completed yet, thus having the ability to finish a schedule by using flexible, rather than fixed, rules. In this research we intend to design more human-like scheduling algorithms, by using ideas derived from Bayesian Optimization Algorithms (BOA) and Learning Classifier Systems (LCS) to implement explicit learning from past solutions. BOA can be applied to learn to identify good partial solutions and to complete them by building a Bayesian network of the joint distribution of solutions [3]. A Bayesian network is a directed acyclic graph with each node corresponding to one variable, and each variable corresponding to individual rule by which a schedule will be constructed step by step. The conditional probabilities are computed according to an initial set of promising solutions. Subsequently, each new instance for each node is generated by using the corresponding conditional probabilities, until values for all nodes have been generated. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the Bayesian network is updated again using the current set of good rule strings. The algorithm thereby tries to explicitly identify and mix promising building blocks. It should be noted that for most scheduling problems the structure of the network model is known and all the variables are fully observed. In this case, the goal of learning is to find the rule values that maximize the likelihood of the training data. Thus learning can amount to 'counting' in the case of multinomial distributions. In the LCS approach, each rule has its strength showing its current usefulness in the system, and this strength is constantly assessed [4]. To implement sophisticated learning based on previous solutions, an improved LCS-based algorithm is designed, which consists of the following three steps. The initialization step is to assign each rule at each stage a constant initial strength. Then rules are selected by using the Roulette Wheel strategy. The next step is to reinforce the strengths of the rules used in the previous solution, keeping the strength of unused rules unchanged. The selection step is to select fitter rules for the next generation. It is envisaged that the LCS part of the algorithm will be used as a hill climber to the BOA algorithm. This is exciting and ambitious research, which might provide the stepping-stone for a new class of scheduling algorithms. Data sets from nurse scheduling and mall problems will be used as test-beds. It is envisaged that once the concept has been proven successful, it will be implemented into general scheduling algorithms. It is also hoped that this research will give some preliminary answers about how to include human-like learning into scheduling algorithms and may therefore be of interest to researchers and practitioners in areas of scheduling and evolutionary computation. References 1. Aickelin, U. and Dowsland, K. (2003) 'Indirect Genetic Algorithm for a Nurse Scheduling Problem', Computer & Operational Research (in print). 2. Li, J. and Kwan, R.S.K. (2003), 'Fuzzy Genetic Algorithm for Driver Scheduling', European Journal of Operational Research 147(2): 334-344. 3. Pelikan, M., Goldberg, D. and Cantu-Paz, E. (1999) 'BOA: The Bayesian Optimization Algorithm', IlliGAL Report No 99003, University of Illinois. 4. Wilson, S. (1994) 'ZCS: A Zeroth-level Classifier System', Evolutionary Computation 2(1), pp 1-18.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le traitement des émotions joue un rôle essentiel dans les relations interpersonnelles. Des déficits dans la reconnaissance des émotions évoquées par les expressions faciales et vocales ont été démontrés à la suite d’un traumatisme craniocérébral (TCC). Toutefois, la majorité des études n’ont pas différencié les participants selon le niveau de gravité du TCC et n’ont pas évalué certains préalables essentiels au traitement émotionnel, tels que la capacité à percevoir les caractéristiques faciales et vocales, et par le fait même, la capacité à y porter attention. Aucune étude ne s’est intéressée au traitement des émotions évoquées par les expressions musicales, alors que la musique est utilisée comme méthode d’intervention afin de répondre à des besoins de prise en charge comportementale, cognitive ou affective chez des personnes présentant des atteintes neurologiques. Ainsi, on ignore si les effets positifs de l’intervention musicale sont basés sur la préservation de la reconnaissance de certaines catégories d’émotions évoquées par les expressions musicales à la suite d’un TCC. La première étude de cette thèse a évalué la reconnaissance des émotions de base (joie, tristesse, peur) évoquées par les expressions faciales, vocales et musicales chez quarante et un adultes (10 TCC modéré-sévère, 9 TCC léger complexe, 11 TCC léger simple et 11 témoins), à partir de tâches expérimentales et de tâches perceptuelles contrôles. Les résultats suggèrent un déficit de la reconnaissance de la peur évoquée par les expressions faciales à la suite d’un TCC modéré-sévère et d’un TCC léger complexe, comparativement aux personnes avec un TCC léger simple et sans TCC. Le déficit n’est pas expliqué par un trouble perceptuel sous-jacent. Les résultats montrent de plus une préservation de la reconnaissance des émotions évoquées par les expressions vocales et musicales à la suite d’un TCC, indépendamment du niveau de gravité. Enfin, malgré une dissociation observée entre les performances aux tâches de reconnaissance des émotions évoquées par les modalités visuelle et auditive, aucune corrélation n’a été trouvée entre les expressions vocales et musicales. La deuxième étude a mesuré les ondes cérébrales précoces (N1, N170) et plus tardives (N2) de vingt-cinq adultes (10 TCC léger simple, 1 TCC léger complexe, 3 TCC modéré-sévère et 11 témoins), pendant la présentation d’expressions faciales évoquant la peur, la neutralité et la joie. Les résultats suggèrent des altérations dans le traitement attentionnel précoce à la suite d’un TCC, qui amenuisent le traitement ultérieur de la peur évoquée par les expressions faciales. En somme, les conclusions de cette thèse affinent notre compréhension du traitement des émotions évoquées par les expressions faciales, vocales et musicales à la suite d’un TCC selon le niveau de gravité. Les résultats permettent également de mieux saisir les origines des déficits du traitement des émotions évoquées par les expressions faciales à la suite d’un TCC, lesquels semblent secondaires à des altérations attentionnelles précoces. Cette thèse pourrait contribuer au développement éventuel d’interventions axées sur les émotions à la suite d’un TCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most second language researchers agree that there is a role for corrective feedback in second language writing classes. However, many unanswered questions remain concerning which linguistic features to target and the type and amount of feedback to offer. This study examined two new pieces of writing by 151 learners of English as a Second Language (ESL), in order to investigate the effect of direct and metalinguistic written feedback on errors with the simple past tense, the present perfect tense, dropped pronouns, and pronominal duplication. This inquiry also considered the extent to which learner differences in language-analytic ability (LAA), as measured by the LLAMA F, mediated the effects of these two types of explicit written corrective feedback. Learners in the feedback groups were provided with corrective feedback on two essays, after which learners in all three groups completed two additional writing tasks to determine whether or not the provision of corrective feedback led to greater gains in accuracy compared to no feedback. Both treatment groups, direct and metalinguistic, performed better than the comparison group on new pieces of writing immediately following the treatment sessions, yet direct feedback was more durable than metalinguistic feedback for one structure, the simple past tense. Participants with greater LAA proved more likely to achieve gains in the direct feedback group than in the metalinguistic group, whereas learners with lower LAA benefited more from metalinguistic feedback. Overall, the findings of the present study confirm the results of prior studies that have found a positive role for written corrective feedback in instructed second language acquisition.