475 resultados para taajuusmuuttaja, FPGA, lähtösuodatin
Resumo:
This letter presents an FPGA implementation of a fault-tolerant Hopfield NeuralNetwork (HNN). The robustness of this circuit against Single Event Upsets (SEUs) and Single Event Transients (SETs) has been evaluated. Results show the fault tolerance of the proposed design, compared to a previous non fault- tolerant implementation and a solution based on triple modular redundancy (TMR) of a standard HNN design.
Resumo:
Esta dissertação apresenta o trabalho sobre sincronização de receção para sistemas OFDM. Tendo como objetivo a integração da arquitetura desenvolvida no projeto de investigação \CROWN - Co-operative Radio over Fibre for Wireless Networks" atualmente em curso no Instituto de Telecomunicações. Esta arquitetura de receção foi implementada numa plataforma de desenvolvimento baseada em dispositivos programáveis FPGA, recorrendo as ferramentas de desenvolvimento MatLab, System Generator e ISE. O sistema implementado tem a particularidade de ter um princípio de funcionamento assíncrono e recorre aos algoritmos de Van de Beek [1] e Carlos Ribeiro [2] para proceder a estimação e consequente sincronização. Ambos os algoritmos foram utilizados para estimação do CFO, tendo o algoritmo de Van de Beek sido também utilizado para estimação do início de trama. Foram realizadas análises do desempenho do sistema para diferentes condições, sendo o objectivo de analisar o desempenho dos estimadores implementados. A performance foi então analisada de acordo com BER resultante e do erro de estimação do início de trama e do valor do CFO. Para além da análise individual dos resultados, e também feita uma comparação da precisão de ambos os estimadores.
Resumo:
In this thesis, novel analog-to-digital and digital-to-analog generalized time-interleaved variable bandpass sigma-delta modulators are designed, analysed, evaluated and implemented that are suitable for high performance data conversion for a broad-spectrum of applications. These generalized time-interleaved variable bandpass sigma-delta modulators can perform noise-shaping for any centre frequency from DC to Nyquist. The proposed topologies are well-suited for Butterworth, Chebyshev, inverse-Chebyshev and elliptical filters, where designers have the flexibility of specifying the centre frequency, bandwidth as well as the passband and stopband attenuation parameters. The application of the time-interleaving approach, in combination with these bandpass loop-filters, not only overcomes the limitations that are associated with conventional and mid-band resonator-based bandpass sigma-delta modulators, but also offers an elegant means to increase the conversion bandwidth, thereby relaxing the need to use faster or higher-order sigma-delta modulators. A step-by-step design technique has been developed for the design of time-interleaved variable bandpass sigma-delta modulators. Using this technique, an assortment of lower- and higher-order single- and multi-path generalized A/D variable bandpass sigma-delta modulators were designed, evaluated and compared in terms of their signal-to-noise ratios, hardware complexity, stability, tonality and sensitivity for ideal and non-ideal topologies. Extensive behavioural-level simulations verified that one of the proposed topologies not only used fewer coefficients but also exhibited greater robustness to non-idealties. Furthermore, second-, fourth- and sixth-order single- and multi-path digital variable bandpass digital sigma-delta modulators are designed using this technique. The mathematical modelling and evaluation of tones caused by the finite wordlengths of these digital multi-path sigmadelta modulators, when excited by sinusoidal input signals, are also derived from first principles and verified using simulation and experimental results. The fourth-order digital variable-band sigma-delta modulator topologies are implemented in VHDL and synthesized on Xilinx® SpartanTM-3 Development Kit using fixed-point arithmetic. Circuit outputs were taken via RS232 connection provided on the FPGA board and evaluated using MATLAB routines developed by the author. These routines included the decimation process as well. The experiments undertaken by the author further validated the design methodology presented in the work. In addition, a novel tunable and reconfigurable second-order variable bandpass sigma-delta modulator has been designed and evaluated at the behavioural-level. This topology offers a flexible set of choices for designers and can operate either in single- or dual-mode enabling multi-band implementations on a single digital variable bandpass sigma-delta modulator. This work is also supported by a novel user-friendly design and evaluation tool that has been developed in MATLAB/Simulink that can speed-up the design, evaluation and comparison of analog and digital single-stage and time-interleaved variable bandpass sigma-delta modulators. This tool enables the user to specify the conversion type, topology, loop-filter type, path number and oversampling ratio.
Resumo:
FPGAs and GPUs are often used when real-time performance in video processing is required. An accelerated processor is chosen based on task-specific priorities (power consumption, processing time and detection accuracy), and this decision is normally made once at design time. All three characteristics are important, particularly in battery-powered systems. Here we propose a method for moving selection of processing platform from a single design-time choice to a continuous run time one.We implement Histogram of Oriented Gradients (HOG) detectors for cars and people and Mixture of Gaussians (MoG) motion detectors running across FPGA, GPU and CPU in a heterogeneous system. We use this to detect illegally parked vehicles in urban scenes. Power, time and accuracy information for each detector is characterised. An anomaly measure is assigned to each detected object based on its trajectory and location, when compared to learned contextual movement patterns. This drives processor and implementation selection, so that scenes with high behavioural anomalies are processed with faster but more power hungry implementations, but routine or static time periods are processed with power-optimised, less accurate, slower versions. Real-time performance is evaluated on video datasets including i-LIDS. Compared to power-optimised static selection, automatic dynamic implementation mapping is 10% more accurate but draws 12W extra power in our testbed desktop system.
Resumo:
This paper proposes a JPEG-2000 compliant architecture capable of computing the 2 -D Inverse Discrete Wavelet Transform. The proposed architecture uses a single processor and a row-based schedule to minimize control and routing complexity and to ensure that processor utilization is kept at 100%. The design incorporates the handling of borders through the use of symmetric extension. The architecture has been implemented on the Xilinx Virtex2 FPGA.
Resumo:
As the development of a viable quantum computer nears, existing widely used public-key cryptosystems, such as RSA, will no longer be secure. Thus, significant effort is being invested into post-quantum cryptography (PQC). Lattice-based cryptography (LBC) is one such promising area of PQC, which offers versatile, efficient, and high performance security services. However, the vulnerabilities of these implementations against side-channel attacks (SCA) remain significantly understudied. Most, if not all, lattice-based cryptosystems require noise samples generated from a discrete Gaussian distribution, and a successful timing analysis attack can render the whole cryptosystem broken, making the discrete Gaussian sampler the most vulnerable module to SCA. This research proposes countermeasures against timing information leakage with FPGA-based designs of the CDT-based discrete Gaussian samplers with constant response time, targeting encryption and signature scheme parameters. The proposed designs are compared against the state-of-the-art and are shown to significantly outperform existing implementations. For encryption, the proposed sampler is 9x faster in comparison to the only other existing time-independent CDT sampler design. For signatures, the first time-independent CDT sampler in hardware is proposed.
Resumo:
Ricavare informazioni dalla realtà circostante è un obiettivo molto importante dell'informatica moderna, in modo da poter progettare robot, veicoli a guida autonoma, sistemi di riconoscimento e tanto altro. La computer vision è la parte dell'informatica che se ne occupa e sta sempre più prendendo piede. Per raggiungere tale obiettivo si utilizza una pipeline di visione stereo i cui passi di rettificazione e generazione di mappa di disparità sono oggetto di questa tesi. In particolare visto che questi passi sono spesso affidati a dispositivi hardware dedicati (come le FPGA) allora si ha la necessità di utilizzare algoritmi che siano portabili su questo tipo di tecnologia, dove le risorse sono molto minori. Questa tesi mostra come sia possibile utilizzare tecniche di approssimazione di questi algoritmi in modo da risparmiare risorse ma che che garantiscano comunque ottimi risultati.
Resumo:
Tämän tutkielman tavoitteena oli toteuttaa optinen radiolinkki hyödyntäen ohjelmistoradiota. Työn alkuosassa käydään läpi ohjelmistoradiota yleisellä tasolla sekä yleisesti nykyisin käytössä olevia optisia tiedonsiirtotapoja. Työn keskiosassa käsitellään työhön käytettävä laitteisto ja ohjelmistot sekä optisen radioetuasteen suunnittelu ja toteutus. Työn loppuosassa analysoidaan toteutetun etuasteen toimintaa. Ohjelmistoradio, yleisemmin ohjelmallisesti määritetty radiolaite, jonka toiminnallisuutta, kuten modulaatioita, suodattimia ja kommunikointiin käytettävää taajuuskaistaa, pystytään muuttamaan ohjelmallisesti ilman laitteistomuutoksia. Useimmiten ohjelmistoradioiden toiminnallisuus määrätään ohjelmoimalla ohjelmistoradio-oheislaitteen ohjelmoitavia porttipiirejä, eli FPGA-piirejä. Optisen radioetuasteen suunnittelun pohjana käytettiin audiokäyttöön tarkoitettua infrapunalähetintä ja – vastaanotinta, jotka muokattiin toimimaan näkyvän valon aallonpituuksilla. Ohjelmistoradio-oheislaitteena toimi Ettus USRP1 varustettuna matalataajuisilla lähetin- ja vastaanotintytärkorteilla. Ohjelmistoradion ohjelmointiympäristönä toimi Linux Ubuntu, ja ohjelmistona GNURadio sekä sen graafinen ohjelmointikäyttöliittymä Gnu Radio Companion. Tutkielman lopputuloksena saatiin aikaan piirilevylle rakennettu optisen radioetuasteen prototyyppi, jolla pystyttiin siirtämään digitaalista audiota 300 kbps tiedonsiirtonopeudella muutamien senttimetrien matkalla pimeässä tilassa.
Resumo:
Työssä perehdytään simulaatiotekniikkaan, jossa käytetään osana fyysistä laitteistoa, ja siihen tarvittaviin komponentteihin, kuten ohjelmistorajapintoihin sekä kenttäväylään. Työssä tutustutaan myös IEC 61131-3 ja IEC 61499 -standardien mukaisiin toimintolohkomalleihin, joita käytetään automaatiossa. Näiden perusteella kehitetään järjestelmä, jonka avulla Simulink-ympäristössä voidaan oman toimintolohkon avulla käyttää taajuusmuuttajaa osana simulaatiota. Tällaisen reaaliaikaisen systeemin eri osien väliseen synkronointiin kiinnitetään myös huomiota. Järjestelmää testataan simulaatiomallilla, jossa syötetään vääntömomenttiohje taajuusmuuttajalle, joka mittaa siihen kytketyn moottorin pyörimisnopeuden. Mallilla voidaan esimerkiksi arvioida kuorman hitausmomentti. Työssä tutustutaan myös taajuusmuuttajien ohjelmallisiin ominaisuuksiin ja niiden perusteella pohditaan esitetyn kaltaisten järjestelmien käyttöä hajautettuna automaatiojärjestelmänä. Kokeellinen työ tehtiin säätö- ja digitaalitekniikan laboratoriossa vuoden 2010 aikana.
Resumo:
SD card (Secure Digital Memory Card) is widely used in portable storage medium. Currently, latest researches on SD card, are mainly SD card controller based on FPGA (Field Programmable Gate Array). Most of them are relying on API interface (Application Programming Interface), AHB bus (Advanced High performance Bus), etc. They are dedicated to the realization of ultra high speed communication between SD card and upper systems. Studies about SD card controller, really play a vital role in the field of high speed cameras and other sub-areas of expertise. This design of FPGA-based file systems and SD2.0 IP (Intellectual Property core) does not only exhibit a nice transmission rate, but also achieve the systematic management of files, while retaining a strong portability and practicality. The file system design and implementation on a SD card covers the main three IP innovation points. First, the combination and integration of file system and SD card controller, makes the overall system highly integrated and practical. The popular SD2.0 protocol is implemented for communication channels. Pure digital logic design based on VHDL (Very-High-Speed Integrated Circuit Hardware Description Language), integrates the SD card controller in hardware layer and the FAT32 file system for the entire system. Secondly, the document management system mechanism makes document processing more convenient and easy. Especially for small files in batch processing, it can ease the pressure of upper system to frequently access and process them, thereby enhancing the overall efficiency of systems. Finally, digital design ensures the superior performance. For transmission security, CRC (Cyclic Redundancy Check) algorithm is for data transmission protection. Design of each module is platform-independent of macro cells, and keeps a better portability. Custom integrated instructions and interfaces may facilitate easily to use. Finally, the actual test went through multi-platform method, Xilinx and Altera FPGA developing platforms. The timing simulation and debugging of each module was covered. Finally, Test results show that the designed FPGA-based file system IP on SD card can support SD card, TF card and Micro SD with 2.0 protocols, and the successful implementation of systematic management for stored files, and supports SD bus mode. Data read and write rates in Kingston class10 card is approximately 24.27MB/s and 16.94MB/s.
Resumo:
La invención consiste en un sistema implementado en un microcontrolador o FPGA que cifra y descifra la información mediante un algoritmo de cifrado simétrico basado en una tabla de claves que es recorrida usando un generador de filtro no lineal, produciendo de esta forma una secuencia cifrante que es operada mediante una operación XOR bit a bit dando lugar de este modo palabras de mensaje cifrado o mensaje en claro, dependiendo de si la entrada es el mensaje en claro o el mensaje cifrado respectivamente y mediante la cual, un mismo mensaje puede ser cifrado de muy diferentes formas, dependiendo del momento en el que se cifra.
Resumo:
Over the past few years, the number of wireless networks users has been increasing. Until now, Radio-Frequency (RF) used to be the dominant technology. However, the electromagnetic spectrum in these region is being saturated, demanding for alternative wireless technologies. Recently, with the growing market of LED lighting, the Visible Light Communications has been drawing attentions from the research community. First, it is an eficient device for illumination. Second, because of its easy modulation and high bandwidth. Finally, it can combine illumination and communication in the same device, in other words, it allows to implement highly eficient wireless communication systems. One of the most important aspects in a communication system is its reliability when working in noisy channels. In these scenarios, the received data can be afected by errors. In order to proper system working, it is usually employed a Channel Encoder in the system. Its function is to code the data to be transmitted in order to increase system performance. It commonly uses ECC, which appends redundant information to the original data. At the receiver side, the redundant information is used to recover the erroneous data. This dissertation presents the implementation steps of a Channel Encoder for VLC. It was consider several techniques such as Reed-Solomon and Convolutional codes, Block and Convolutional Interleaving, CRC and Puncturing. A detailed analysis of each technique characteristics was made in order to choose the most appropriate ones. Simulink models were created in order to simulate how diferent codes behave in diferent scenarios. Later, the models were implemented in a FPGA and simulations were performed. Hardware co-simulations were also implemented to faster simulation results. At the end, diferent techniques were combined to create a complete Channel Encoder capable of detect and correct random and burst errors, due to the usage of a RS(255,213) code with a Block Interleaver. Furthermore, after the decoding process, the proposed system can identify uncorrectable errors in the decoded data due to the CRC-32 algorithm.
Resumo:
Many applications, including communications, test and measurement, and radar, require the generation of signals with a high degree of spectral purity. One method for producing tunable, low-noise source signals is to combine the outputs of multiple direct digital synthesizers (DDSs) arranged in a parallel configuration. In such an approach, if all noise is uncorrelated across channels, the noise will decrease relative to the combined signal power, resulting in a reduction of sideband noise and an increase in SNR. However, in any real array, the broadband noise and spurious components will be correlated to some degree, limiting the gains achieved by parallelization. This thesis examines the potential performance benefits that may arise from using an array of DDSs, with a focus on several types of common DDS errors, including phase noise, phase truncation spurs, quantization noise spurs, and quantizer nonlinearity spurs. Measurements to determine the level of correlation among DDS channels were made on a custom 14-channel DDS testbed. The investigation of the phase noise of a DDS array indicates that the contribution to the phase noise from the DACs can be decreased to a desired level by using a large enough number of channels. In such a system, the phase noise qualities of the source clock and the system cost and complexity will be the main limitations on the phase noise of the DDS array. The study of phase truncation spurs suggests that, at least in our system, the phase truncation spurs are uncorrelated, contrary to the theoretical prediction. We believe this decorrelation is due to the existence of an unidentified mechanism in our DDS array that is unaccounted for in our current operational DDS model. This mechanism, likely due to some timing element in the FPGA, causes some randomness in the relative phases of the truncation spurs from channel to channel each time the DDS array is powered up. This randomness decorrelates the phase truncation spurs, opening the potential for SFDR gain from using a DDS array. The analysis of the correlation of quantization noise spurs in an array of DDSs shows that the total quantization noise power of each DDS channel is uncorrelated for nearly all values of DAC output bits. This suggests that a near N gain in SQNR is possible for an N-channel array of DDSs. This gain will be most apparent for low-bit DACs in which quantization noise is notably higher than the thermal noise contribution. Lastly, the measurements of the correlation of quantizer nonlinearity spurs demonstrate that the second and third harmonics are highly correlated across channels for all frequencies tested. This means that there is no benefit to using an array of DDSs for the problems of in-band quantizer nonlinearities. As a result, alternate methods of harmonic spur management must be employed.
Resumo:
International audience
Resumo:
The philosophy of minimalism in robotics promotes gaining an understanding of sensing and computational requirements for solving a task. This minimalist approach lies in contrast to the common practice of first taking an existing sensory motor system, and only afterwards determining how to apply the robotic system to the task. While it may seem convenient to simply apply existing hardware systems to the task at hand, this design philosophy often proves to be wasteful in terms of energy consumption and cost, along with unnecessary complexity and decreased reliability. While impressive in terms of their versatility, complex robots such as the PR2 (which cost hundreds of thousands of dollars) are impractical for many common applications. Instead, if a specific task is required, sensing and computational requirements can be determined specific to that task, and a clever hardware implementation can be built to accomplish the task. Since this minimalist hardware would be designed around accomplishing the specified task, significant reductions in hardware complexity can be obtained. This can lead to huge advantages in battery life, cost, and reliability. Even if cost is of no concern, battery life is often a limiting factor in many applications. Thus, a minimalist hardware system is critical in achieving the system requirements. In this thesis, we will discuss an implementation of a counting, tracking, and actuation system as it relates to ergodic bodies to illustrate a minimalist design methodology.