918 resultados para infrastructure development


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this research is to discover development points for business processes and sales reporting in the recovered paper sourcing organization. The processes under development are both sales and sourcing processes that were determined by the commissioning company. All of these processes have in common that there are used sales orders to organize the money flows correctly. Although the main objective is to source only recovered paper, the sourcing also brings by-products that cannot be utilized and are thus sold. As the purpose of the sales function is to only support the sourcing strategy, it should be organized as efficiently as possible. Investigating the current status of the processes and finding development points help in building proposals for enhanced process descriptions. In order that sales function could be analyzed, should the sales reporting be accurate and present the needed key figures. The current status of the processes as well as the possible problems and development ideas were researched with the help of interviews. Best practices could also be brought from other business lines in the commissioning company. The theory part was build according to relevant literature and scientific articles. The research indicates, that processes have shaped differently in sourcing organization’s business units. Local infrastructure and legislation sets certain limitations to the sourcing of recovered paper, and these circumstances cannot be changed. Customer-supplier power relations also affect to the formulation of business processes. In order to steer the processes, there has to be more internal controls. Still, the enterprise resource planning system also sets boundaries how the processes can be made more efficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Good schools are essential for building thriving urban areas. They are important for preparing the future human resource and directly contribute to social and economic development of a place. They not only act as magnets for prospective residents, but also are necessary for retaining current population. As public infrastructure, schools mirror their neighborhood. “Their location, design and physical condition are important determinants of neighborhood quality, regional growth and change, and quality of life.”2 They impact housing development and utility requirements among many things. Hence, planning for schools along with other infrastructure in an area is essential. Schools are very challenging to plan, especially in urbanizing areas with changing demographic dynamics, where the development market and housing development can shift drastically a number of times. In such places projecting the future school enrollments is very difficult and in case of large population influx, school development can be unable to catch up with population growth which results in overcrowding. Typical is the case of Arlington County VA. In the past two decades the County has changed dramatically from a collection of bedroom communities in Washington DC Metro Region to a thriving urban area. Its metro accessible urban corridors are among most desired locations for development in the region. However, converting single family neighborhoods into high density areas has put a lot of pressure on its school facilities and has resulted in overcrowded schools. Its public school enrollment has grown by 19% from 2009 to 2014.3 While the percentage of population under 5 years age has increased in last 10 years, those in the 5-19 age group have decreased4. Hence, there is more pressure on the elementary school facilities than others in the County. Design-wise, elementary schools, due to their size, can be imagined as a community component. There are a number of strategies that can be used to develop elementary school in urbanizing areas as a part of the neighborhood. Experimenting with space planning and building on partnership and mixed-use opportunities can help produce better designs for new schools in future. This thesis is an attempt to develop elementary school models for urbanizing areas of Arlington County. The school models will be designed keeping in mind the shifting nature of population and resulting student enrollments in these areas. They will also aim to be efficient and sustainable, and lead to the next generation design for elementary school education. The overall purpose of the project is to address barriers to elementary school development in urbanizing areas through creative design and planning strategies. To test above mentioned ideas, the Joint-Use School typology of housing +school design has been identified for elementary school development in urbanizing areas in this thesis project. The development is based on the Arlington Public School’s Program guidelines (catering to 600 students). The site selected for this project is Clarendon West (part of Red Top Cab Properties) in Clarendon, Arlington County VA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This document is summarizing a major part of the work performed by the FP7-JERICO consortium, including 27 partner institutions, during 4 years (2011-2015). Its objective is to propose a strategy for the European coastal observation and monitoring. To do so we give an overview of the main achievements of the FP7-JERICO project. From this overview, gaps are analysed to draw some recommendations for the future. Overview, gaps and recommendation are addressed at both Hardware and Software levels of the JERICO Research Infrastructure. The main part of the document is built upon this analysis to outcome a general strategy for the future, giving priorities to be targeted and some possible funding mechanisms, but also upon discussions held in dedicated JERICO strategy workshops. This document was initiated in 2014 by the coordination team but considering the fact that an overview of the entire project and its achievement were needed to feed this strategy deliverable it couldn’t ended before the end of FP7-JERICO, April 2015. The preparation of the JERICO-NEXT proposal in summer 2014 to answer an H2020 call for proposals pushed the consortium ahead, fed deep thoughts about this strategy but the intention was to not propose a strategy only bounded by the JERICO-NEXT answer. Authors are conscious that writing JERICO-NEXT is even drawing a bias in the thoughts and they tried to be opened. Nevertheless, comments are always welcome to go farther ahead. Structure of the document The Chapter 3 introduces the need of sustained coastal observatories, from different point of view including a short description of the FP7-JERICO project. In Chapter 4, an analysis of the JERICO coastal observatory Hardware (platforms and sensors) in terms of Status at the end of JERICO, identified gaps and recommendations for further development is provided region by region. The main challenges that remain to be overcome is also summarized. Chapter 5 is dedicated the JERICO infrastructure Software (calibration, operation, quality assessment, data management) and the progress made through JERICO on harmonization of procedures and definition of best practices. Chapter 6 provides elements of a strategy towards sustainable and integrated coastal observations for Europe, drawing a roadmap for cost-effective scientific-based consolidation of the present infrastructure while maximizing the potential arising from JERICO in terms of innovation, wealth-creation, and business development. After reading the chapter 3, for who doesn’t know JERICO, any chapter can be read independently. More details are available in the JERICO final reports and its intermediate reports; all are available on the JERICO web site (www.jerico-FP7.eu) as well as any deliverable. Each chapter will list referring JERICO documents. A small bibliographic list is available at the end of this deliverable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.