996 resultados para bone radiography


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anterior cruciate ligament (ACL) tear is a common sports injury of the knee. Arthroscopic reconstruction using autogenous graft material is widely used for patients with ACL instability. The grafts most commonly used are the patellar and the hamstring tendons, by various fixation techniques. Although clinical evaluation and conventional radiography are routinely used in follow-up after ACL surgery, magnetic resonance imaging (MRI) plays an important role in the diagnosis of complications after ACL surgery. The aim of this thesis was to study the clinical outcome of patellar and hamstring tendon ACL reconstruction techniques. In addition, the postoperative appearance of the ACL graft was evaluated using several MRI sequences. Of the 175 patients who underwent an arthroscopically assisted ACL reconstruction, 99 patients were randomized into patellar tendon (n=51) or hamstring tendon (n=48) groups. In addition, 62 patients with hamstring graft ACL reconstruction were randomized into either cross-pin (n=31) or interference screw (n=31) fixation groups. Follow-up evaluation determined knee laxity, isokinetic muscle performance and several knee scores. Lateral and anteroposterior view radiographs were obtained. Several MRI sequences were obtained with a 1.5-T imager. The appearance and enhancement pattern of the graft and periligamentous tissue, and the location of bone tunnels were evaluated. After MRI, arthroscopy was performed on 14 symptomatic knees. The results revealed no significant differences in the 2-year outcome between the groups. In the hamstring tendon group, the average femoral and tibial bone tunnel diameter increased during 2 years follow-up by 33% and 23%, respectively. In the asymptomatic knees, the graft showed homogeneous and low signal intensity with periligamentous streaks of intermediate signal intensity on T2-weighted MR images. In the symptomatic knees, arthroscopy revealed 12 abnormal grafts and two meniscal tears, each with an intact graft. Among 3 lax grafts visible on arthroscopy, MRI showed an intact graft and improper bone tunnel placement. For diagnosing graft failure, all MRI findings combined gave a specificity of 90% and a sensitivity of 81%. In conclusion, all techniques appeared to improve patients' performance, and were therefore considered as good choices for ACL reconstruction. In follow-up, MRI permits direct evaluation of the ACL graft, the bone tunnels, and additional disorders of the knee. Bone tunnel enlargement and periligamentous tissue showing contrast enhancement were non-specific MRI findings that did not signify ACL deficiency. With an intact graft and optimal femoral bone tunnel placement, graft deficiency is unlikely, and the MRI examination should be carefully scrutinized for possible other causes for the patients symptoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In castrate-resistant prostate cancer (CRPC), the prevailing organ for metastasis is bone, where the survival of cancer cells is regulated by the permissive metastatic niche offered by the bone marrow. The tumour microenvironment and cellular interactions with the matrix and bone cells enable metastasis and lead to cancer cells becoming androgen resistant. Hence, 3D models that mimic CRPC in terms of an androgen deprivation state (ADS) are needed to identify the mechanisms for CPRC growth in bone and further develop therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis is not only a disease of the elderly, but is increasingly diagnosed in chronically ill children. Children with severe motor disabilities, such as cerebral palsy (CP), have many risk factors for osteoporosis. Adults with intellectual disability (ID) are also prone to low bone mineral density (BMD) and increased fractures. This study was carried out to identify risk factors for low BMD and osteoporosis in children with severe motor disability and in adults with ID. In this study 59 children with severe motor disability, ranging in age from 5 to 16 years were evaluated. Lumbar spine BMD was measured with dual-energy x-ray absorptiometry. BMD values were corrected for bone size by calculating bone mineral apparent density (BMAD), and for bone age. The values were transformed into Z-scores by comparison with normative data. Spinal radiographs were assessed for vertebral morphology. Blood samples were obtained for biochemical parameters. Parents were requested to keep a food diary for three days. The median daily energy and nutrient intakes were calculated. Fractures were common; 17% of the children had sustained peripheral fractures and 25% had compression fractures. BMD was low in children; the median spinal BMAD Z-score was -1.0 (range -5.0 – +2.0) and the BMAD Z-score <-2.0 in 20% of the children. Low BMAD Z-score and hypercalciuria were significant risk factors for fractures. In children with motor disability, calcium intakes were sufficient, while total energy and vitamin D intakes were not. In the vitamin D intervention studies, 44 children and adolescents with severe motor disability and 138 adults with ID were studied. After baseline blood samples, the children were divided into two groups; those in the treatment group received 1000 IU peroral vitamin D3 five days a week for 10 weeks, and subjects in the control group continued with their normal diet. Adults with ID were allocated to receive either 800 IU peroral vitamin D3 daily for six months or a single intramuscular injection of 150 000 IU D3. Blood samples were obtained at baseline and after treatment. Serum concentrations of 25-OH-vitamin D (S-25-OHD) were low in all subgroups before vitamin D intervention: in almost 60% of children and in 77% of adults the S-25-OHD concentration was below 50 nmol/L, indicating vitamin D insufficiency. After vitamin D intervention, 19% of children and 42% adults who received vitamin D perorally and 12% of adults who received vitamin D intramuscularly had optimal S-25-OHD (>80 nmol/L). This study demonstrated that low BMD and peripheral and spinal fractures are common in children with severe motor disabilities. Vitamin D status was suboptimal in the majority of children with motor disability and adults with ID. Vitamin D insufficiency can be corrected with vitamin D supplements; the peroral dose should be at least 800 IU per day.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct bone marrow (BM) injection has been proposed as a strategy to bypass homing inefficiencies associated with intravenous (IV) hematopoietic stem cell (HSC) transplantation. Despite physical delivery into the BM cavity, many donor cells are rapidly redistributed by vascular perfusion, perhaps compromising efficacy. Anchoring donor cells to 3-dimensional (3D) multicellular spheroids, formed from mesenchymal stem/stromal cells (MSC) might improve direct BM transplantation. To test this hypothesis, relevant combinations of human umbilical cord blood-derived CD34(+) cells and BM-derived MSC were transplanted into NOD/SCID gamma (NSG) mice using either IV or intrafemoral (IF) routes. IF transplantation resulted in higher human CD45(+) and CD34(+) cell engraftment within injected femurs relative to distal femurs regardless of cell combination, but did not improve overall CD45(+) engraftment at 8 weeks. Analysis within individual mice revealed that despite engraftment reaching near saturation within the injected femur, engraftment at distal hematopoietic sites including peripheral blood, spleen and non-injected femur, could be poor. Our data suggest that the retention of human HSC within the BM following direct BM injection enhances local chimerism at the expense of systemic chimerism in this xenogeneic model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rheumatoid arthritis is the most common of all types of arthritis and despite of intensive research etiology of the disease remains unclear. Distinctive features of rheumatic arthritis comprise continuous inflammation of synovium, in which synovial membrane expands on cartilage leading to pannus tissue formation. Pannus formation, appearance of proteolytic enzymes and osteoclast formation cause articular cartilage and bone destruction, which lead to erosions and permanent joint damage. Proteolytic pathways play major roles in the development of tissue lesions in rheumatoid arthritis. Degradation of extracellular matrix proteins is essential to pannus formation and invasion. Matrix metalloproteinases (MMP) form a large proteolytic enzyme family and in rheumatoid arthritis they contribute to pannus invasion by degrading extracellular matrix and to joint destruction by directly degrading the cartilage. MMP-1 and MMP-3 are shown to be increased during cell invasion and also involved in cartilage destruction. Increase of many cytokines has been observed in rheumatoid arthritis, especially TNF-α and IL-1β are studied in synovial tissue and are involved in rheumatoid inflammation and degradation of cartilage. Underlying bone resorption requires first demineralization of bone matrix with acid secreted by osteoclasts, which exposes the collagen-rich matrix for degradation. Cathepsin K is the best known enzyme involved in bone matrix degradation, however deficiency of this protein in pycnodysostosis patient did not prevent bone erosion and on the contrary pannus tissue invading to bone did not expressed much cathepsin K. These indicate that other proteinases are involved in bone degradation, perhaps also via their capability to replace the role of other enzymes especially in diseases like pycnodysostosis or during medication e.g. using cathepsin K inhibitors. Multinuclear osteoclasts are formed also in pannus tissue, which enable the invasion into underlying bone matrix. Pannus tissue express a receptor activator of nuclear factor kappa B ligand (RANKL), an essential factor for osteoclast differentiation and a disintegrin and a metalloproteinase 8 (ADAM8), an osteoclast-activating factors, involved in formation of osteoclast-like giant cells by promoting fusion of mononuclear precursor cells. The understanding of pannus invasion and degradation of extracellular matrix in rheumatic arthritis will open us new more specific methods to prevent this destructive joint disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis is a disease of low bone mass most often caused by an increase in bone resorption that is not sufficiently compensated for by a corresponding increase in bone formation(1). As gut-derived serotonin (GDS) inhibits bone formation(2), we asked whether hampering its biosynthesis could treat osteoporosis through an anabolic mechanism (that is, by increasing bone formation). We synthesized and used LP533401, a small molecule inhibitor of tryptophan hydroxylase-1 (Tph-1), the initial enzyme in GDS biosynthesis. Oral administration of this small molecule once daily for up to six weeks acts prophylactically or therapeutically, in a dose-dependent manner, to treat osteoporosis in ovariectomized rodents because of an isolated increase in bone formation. These results provide a proof of principle that inhibiting GDS biosynthesis could become a new anabolic treatment for osteoporosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diagnostic radiology represents the largest man-made contribution to population radiation doses in Europe. To be able to keep the diagnostic benefit versus radiation risk ratio as high as possible, it is important to understand the quantitative relationship between the patient radiation dose and the various factors which affect the dose, such as the scan parameters, scan mode, and patient size. Paediatric patients have a higher probability for late radiation effects, since longer life expectancy is combined with the higher radiation sensitivity of the developing organs. The experience with particular paediatric examinations may be very limited and paediatric acquisition protocols may not be optimised. The purpose of this thesis was to enhance and compare different dosimetric protocols, to promote the establishment of the paediatric diagnostic reference levels (DRLs), and to provide new data on patient doses for optimisation purposes in computed tomography (with new applications for dental imaging) and in paediatric radiography. Large variations in radiation exposure in paediatric skull, sinus, chest, pelvic and abdominal radiography examinations were discovered in patient dose surveys. There were variations between different hospitals and examination rooms, between different sized patients, and between imaging techniques; emphasising the need for harmonisation of the examination protocols. For computed tomography, a correction coefficient, which takes individual patient size into account in patient dosimetry, was created. The presented patient size correction method can be used for both adult and paediatric purposes. Dental cone beam CT scanners provided adequate image quality for dentomaxillofacial examinations while delivering considerably smaller effective doses to patient compared to the multi slice CT. However, large dose differences between cone beam CT scanners were not explained by differences in image quality, which indicated the lack of optimisation. For paediatric radiography, a graphical method was created for setting the diagnostic reference levels in chest examinations, and the DRLs were given as a function of patient projection thickness. Paediatric DRLs were also given for sinus radiography. The detailed information about the patient data, exposure parameters and procedures provided tools for reducing the patient doses in paediatric radiography. The mean tissue doses presented for paediatric radiography enabled future risk assessments to be done. The calculated effective doses can be used for comparing different diagnostic procedures, as well as for comparing the use of similar technologies and procedures in different hospitals and countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to share the key elements of an evaluation framework to determine the true clinical outcomes of bone-anchored prostheses. Scientists, clinicians and policy makers are encouraged to implement their own evaluations relying on the proposed framework using a single database to facilitate reflective practice and, eventually, robust prospective studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone mass accrual and maintenance are regulated by a complex interplay between genetic and environmental factors. Recent studies have revealed an important role for the low-density lipoprotein receptor-related protein 5 (LRP5) in this process. The aim of this thesis study was to identify novel variants in the LRP5 gene and to further elucidate the association of LRP5 and its variants with various bone health related clinical characteristics. The results of our studies show that loss-of-function mutations in LRP5 cause severe osteoporosis not only in homozygous subjects but also in the carriers of these mutations, who have significantly reduced bone mineral density (BMD) and increased susceptibility to fractures. In addition, we demonstrated for the first time that a common polymorphic LRP5 variant (p.A1330V) was associated with reduced peak bone mass, an important determinant of BMD and osteoporosis in later life. The results from these two studies are concordant with results seen in other studies on LRP5 mutations and in association studies linking genetic variation in LRP5 with BMD and osteoporosis. Several rare LRP5 variants were identified in children with recurrent fractures. Sequencing and multiplex ligation-dependent probe amplification (MLPA) analyses revealed no disease-causing mutations or whole-exon deletions. Our findings from clinical assessments and family-based genotype-phenotype studies suggested that the rare LRP5 variants identified are not the definite cause of fractures in these children. Clinical assessments of our study subjects with LPR5 mutations revealed an unexpectedly high prevalence of impaired glucose tolerance and dyslipidaemia. Moreover, in subsequent studies we discovered that common polymorphic LRP5 variants are associated with unfavorable metabolic characteristics. Changes in lipid profile were already apparent in pre-pubertal children. These results, together with the findings from other studies, suggest an important role for LRP5 also in glucose and lipid metabolism. Our results underscore the important role of LRP5 not only in bone mass accrual and maintenance of skeletal health but also in glucose and lipid metabolism. The role of LRP5 in bone metabolism has long been studied, but further studies with larger study cohorts are still needed to evaluate the specific role of LRP5 variants as metabolic risk factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute childhood osteomyelitis (OM), septic arthritis (SA), and their combination osteomyelitis with adjacent septic arthritis (OM+SA), are treated with long courses of antimicrobials and immediate surgery. We conducted a prospective multi-center randomized trial among Finnish children at age 3 months to 15 years in 1983-2005. According to the two-by-two factorial study design, children with OM or OM+SA received 20 or 30 days of antimicrobials, whereas those with SA were treated for 10 or 30 days. In addition, the whole series was randomized to be treated with clindamycin or a first-generation cephalosporin. Cases were included only if the causative agent was isolated. The treatment was instituted intravenously, but only for the first 2-4 days. Percutaneous aspiration was done to obtain a representative sample for bacteriology, but all other surgical intervention was kept at a minimum. A total of 265 patients fulfilled our strict inclusion criteria and were analyzed; 106 children had OM, 134 SA, and 25 OM+SA. In the OM group, one child in the long and one child in the short-term treatment group developed sequelae. One child with SA twice developed a late re-infection of the same joint, but the causative agents differed. Regarding surgery, diagnostic arthrocentesis or corticotomy was the only surgical procedure performed in most cases. Routine arthrotomy was not required even in hip arthritis. Serum C-reactive protein (CRP) proved to be a reliable laboratory index in the diagnosis and monitoring of osteoarticular infections. The recovery rate was similar regardless of whether clindamycin or a first-generation cephalosporin was used. We conclude that a course of 20 days of these well-absorbing antimicrobials is sufficient for OM or OM+SA, and 10 days for SA in most cases beyond the neonatal age. A short intravenous phase of only 2-5 days often suffices. CRP gives valuable information in monitoring the course of illness. Besides diagnostic aspiration, surgery should be reserved for selected cases.