916 resultados para Refuse-Derived Fuels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coffee production was closely linked to the economic development of Brazil and, even today, coffee is an important product of the national agriculture. The State of Minas Gerais currently accounts for 52% of the whole coffee area in Brazil. Remote sensing data can provide information for monitoring and mapping of coffee crops, faster and cheaper than conventional methods. In this context, the objective of this study was to assess the effectiveness of coffee crop mapping in Monte Santo de Minas municipality, Minas Gerais State, Brazil, from fraction images derived from MODIS data, in both dry and rainy seasons. The Spectral Linear Mixing Model was used to derive fraction images of soil, coffee, and water/shade. These fraction images served as input data for the supervised automatic classification using the SVM - Support Vector Machine approach. The best results concerning Overall Accuracy and Kappa Index were obtained in the classification of the dry season, with 67% and 0.41, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the thesis is to examine the current state of risk management and to determine an appropriate risk management policy for commercial property derived risks in the Russian branch of a Finnish retail trade company. The employed research methodologies are comparative in-depth interviews and empirical value at risk analysis, including portfolio risk decomposition to determine the inter-currency characteristics. For a multinational retail trade company, the commercial property derived risks open up as a diverse combination of financial and non-financial risks with four distinctive interest groups. The research results indicate that geographical diversification across currency regimes provides diversification benefits. The Russian ruble is the most significant single risk component when considering the net investments outside the euro-zone. Decreasing the Russian ruble and Swedish krona exposures are the most effective methods to reduce translation derived risk. Exchange rate volatility varies over time according to idiosyncratic currency regime characteristics, and cost-effective risk management requires comprehensive analysis of the business environment. Profound and proactive risk management methods are found to be pivotal for companies with cross-border operations in order to succeed among international competitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is based on computational chemistry studies on lignans, focusing on the naturally occurring lignan hydroxymatairesinol (HMR) (Papers I II) and on TADDOL-like conidendrin-based chiral 1,4-diol ligands (LIGNOLs) (Papers III V). A complete quantum chemical conformational analysis on HMR was previously conducted by Dr. Antti Taskinen. In the works reported in this thesis, HMR was further studied by classical molecular dynamics (MD) simulations in aqueous solution including torsional angle analysis, quantum chemical solvation e ect study by the COnductorlike Screening MOdel (COSMO), and hydrogen bond analysis (Paper I), as well as from a catalytic point of view including protonation and deprotonation studies at di erent levels of theory (Paper II). The computational LIGNOL studies in this thesis constitute a multi-level deterministic structural optimization of the following molecules: 1,1-diphenyl (2Ph), two diastereomers of 1,1,4-triphenyl (3PhR, 3PhS), 1,1,4,4-tetraphenyl (4Ph) and 1,1,4,4-tetramethyl (4Met) 1,4-diol (Paper IV) and a conformational solvation study applying MD and COSMO (Paper V). Furthermore, a computational study on hemiketals in connection with problems in the experimental work by Docent Patrik Eklund's group synthesizing the LIGNOLs based on natural products starting from HMR, is shortly described (Paper III).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational fluid dynamics (CFD) modeling is an important tool in designing new combustion systems. By using CFD modeling, entire combustion systems can be modeled and the emissions and the performance can be predicted. CFD modeling can also be used to develop new and better combustion systems from an economical and environmental point of view. In CFD modeling of solid fuel combustion, the combustible fuel is generally treated as single fuel particles. One of the limitations with the CFD modeling concerns the sub-models describing the combustion of single fuel particles. Available models in the scientific literature are in many cases not suitable as submodels for CFD modeling since they depend on a large number of input parameters and are computationally heavy. In this thesis CFD-applicable models are developed for the combustion of single fuel particles. The single particle models can be used to improve the combustion performance in various combustion devices or develop completely new technologies. The investigated fields are oxidation of carbon (C) and nitrogen (N) in char residues from solid fuels. Modeled char-C oxidation rates are compared to experimental oxidation rates for a large number of pulverized solid fuel chars under relevant combustion conditions. The experiments have been performed in an isothermal plug flow reactor operating at 1123-1673 K and 3-15 vol.% O2. In the single particle model, the char oxidation is based on apparent kinetics and depends on three fuel specific parameters: apparent pre-exponential factor, apparent activation energy, and apparent reaction order. The single particle model can be incorporated as a sub-model into a CFD code. The results show that the modeled char oxidation rates are in good agreement with experimental char oxidation rates up to around 70% of burnout. Moreover, the results show that the activation energy and the reaction order can be assumed to be constant for a large number of bituminous coal chars under conditions limited by the combined effects of chemical kinetics and pore diffusion. Based on this, a new model based on only one fuel specific parameter is developed (Paper III). The results also show that reaction orders of bituminous coal chars and anthracite chars differ under similar conditions (Paper I and Paper II); reaction orders of bituminous coal chars were found to be one, while reaction orders of anthracite chars were determined to be zero. This difference in reaction orders has not previously been observed in the literature and should be considered in future char oxidation models. One of the most frequently used comprehensive char oxidation models could not explain the difference in the reaction orders. In the thesis (Paper II), a modification to the model is suggested in order to explain the difference in reaction orders between anthracite chars and bituminous coal chars. Two single particle models are also developed for the NO formation and reduction during the oxidation of single biomass char particles. In the models the char-N is assumed to be oxidized to NO and the NO is partly reduced inside the particle. The first model (Paper IV) is based on the concentration gradients of NO inside and outside the particle and the second model is simplified to such an extent that it is based on apparent kinetics and can be incorporated as a sub-model into a CFD code (Paper V). Modeled NO release rates from both models were in good agreement with experimental measurements from a single particle reactor of quartz glass operating at 1173-1323 K and 3-19 vol.% O2. In the future, the models can be used to reduce NO emissions in new combustion systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the study was to isolate, cultivate and characterize equine peripheral blood-derived multipotent mesenchymal stromal cells (PbMSCs). Peripheral blood was collected, followed by the isolation of mononuclear cells using density gradient reagents, and the cultivation of adherent cells. Monoclonal mouse anti-horse CD13, mouse anti-horse CD44, and mouse anti-rat CD90 antibodies were used for the immunophenotypic characterization of the surface of the PbMSCs. These cells were also cultured in specific media for adipogenic and chondrogenic differentiation. There was no expression of the CD13 marker, but CD44 and CD90 were expressed in all of the passages tested. After 14 days of cell differentiation into adipocytes, lipid droplets were observed upon Oil Red O (ORO) staining. Twenty-one days after chondrogenic differentiation, the cells were stained with Alcian Blue. Although the technique for the isolation of these cells requires improvement, the present study demonstrates the partial characterization of PbMSCs, classifying them as a promising type of progenitor cells for use in equine cell therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to evaluate the culture of equine bone marrow mononuclear fraction and adipose tissue - derived stromal vascular fraction cells in two different cell culture media. Five adult horses were submitted to bone marrow aspiration from the sternum, and then from the adipose tissue of the gluteal region near the base of the tail. Mononuclear fraction and stromal vascular fraction were isolated from the samples and cultivated in DMEM medium supplemented with 10% fetal bovine serum or in AIM-V medium. The cultures were observed once a week with an inverted microscope, to perform a qualitative analysis of the morphology of the cells as well as the general appearance of the cell culture. Colony-forming units (CFU) were counted on days 5, 15 and 25 of cell culture. During the first week of culture, differences were observed between the samples from the same source maintained in different culture media. The number of colonies was significantly higher in samples of bone marrow in relation to samples of adipose tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSC) are increasingly being proposed as a therapeutic option for treatment of a variety of different diseases in human and veterinary medicine. Stem cells have been isolated from feline bone marrow, however, very few data exist about the morphology of these cells and no data were found about the morphometry of feline bone marrow-derived MSCs (BM-MSCs). The objectives of this study were the isolation, growth evaluation, differentiation potential and characterization of feline BM-MSCs by their morphological and morphometric characteristics. in vitro differentiation assays were conducted to confirm the multipotency of feline MSC, as assessed by their ability to differentiate into three cell lineages (osteoblasts, chondrocytes, and adipocytes). To evaluate morphological and morphometric characteristics the cells are maintained in culture. Cells were observed with light microscope, with association of dyes, and they were measured at 24, 48, 72 and 120h of culture (P1 and P3). The non-parametric ANOVA test for independent samples was performed and the means were compared by Tukey's test. On average, the number of mononuclear cells obtained was 12.29 (±6.05x10(6)) cells/mL of bone marrow. Morphologically, BM-MSCs were long and fusiforms, and squamous with abundant cytoplasm. In the morphometric study of the cells, it was observed a significant increase in average length of cells during the first passage. The cell lengths were 106.97±38.16µm and 177.91±71.61µm, respectively, at first and third passages (24 h). The cell widths were 30.79±16.75 µm and 40.18±20.46µm, respectively, at first and third passages (24 h).The nucleus length of the feline BM-MSCs at P1 increased from 16.28µm (24h) to 21.29µm (120h). However, at P3, the nucleus length was 26.35µm (24h) and 25.22µm (120h). This information could be important for future application and use of feline BM-MSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forest biomass represents a geographically distributed feedstock, and geographical location affects the greenhouse gas (GHG) performance of a given forest-bioenergy system in several ways. For example, biomass availability, forest operations, transportation possibilities and the distances involved, biomass end-use possibilities, fossil reference systems, and forest carbon balances all depend to some extent on location. The overall objective of this thesis was to assess the GHG emissions derived from supply and energy-utilization chains of forest biomass in Finland, with a specific focus on the effect of location in relation to forest biomass’s availability and the transportation possibilities. Biomass availability and transportation-network assessments were conducted through utilization of geographical information system methods, and the GHG emissions were assessed by means of lifecycle assessment. The thesis is based on four papers in which forest biomass supply on industrial scale was assessed. The feedstocks assessed in this thesis include harvesting residues, smalldiameter energy wood and stumps. The principal implication of the findings in this thesis is that in Finland, the location and availability of biomass in the proximity of a given energyutilization or energy-conversion plant is not a decisive factor in supply-chain GHG emissions or the possible GHG savings to be achieved with forest-biomass energy use. Therefore, for the greatest GHG reductions with limited forest-biomass resources, energy utilization of forest biomass in Finland should be directed to the locations where most GHG savings are achieved through replacement of fossil fuels. Furthermore, one should prioritize the types of forest biomass with the lowest direct supply-chain GHG emissions (e.g., from transport and comminution) and the lowest indirect ones (in particular, soil carbon-stock losses), regardless of location. In this respect, the best combination is to use harvesting residues in combined heat and power production, replacing peat or coal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of our society is impossible without a constant progress in life-important areas such as chemical engineering and technology. Innovation, creativity and technology are three main components driving the progress of chemistry further towards a sustainable society. Biomass, being an attractive renewable feedstock for production of fine chemicals, energy-rich materials and even transportation fuels, captures progressively new positions in the area of chemical technology. Knowledge of heterogeneous catalysis and chemical technology applied to transformation of biomass-derived substances will open doors for a sustainable economy and facilitates the discovery of novel environmentally-benign processes which probably will replace existing technologies in the era of biorefinary. Aqueous-phase reforming (APR) is regarded as a promising technology for production of hydrogen and liquids fuels from biomass-derived substances such as C3-C6 polyols. In the present work, aqueous-phase reforming of glycerol, xylitol and sorbitol was investigated in the presence of supported Pt catalysts. The catalysts were deposited on different support materials, including Al2O3, TiO2 and carbons. Catalytic measurements were performed in a laboratory-scale continuous fixedbed reactor. An advanced analytical approach was developed in order to identify reaction products and reaction intermediates in the APR of polyols. The influence of the substrate structure on the product formation and selectivity in the APR reaction was also investigated, showing that the yields of the desired products varied depending on the substrate chain length. Additionally, the influence of bioethanol additive in the APR of glycerol and sorbitol was studied. A reaction network was advanced explaining the formation of products and key intermediates. The structure sensitivity in the aqueous-phase reforming reaction was demonstrated using a series of platinum catalysts supported on carbon with different Pt cluster sizes in the continuous fixed-bed reactor. Furthermore, a correlation between texture physico-chemical properties of the catalysts and catalytic data was established. The effect of the second metal (Re, Cu) addition to Pt catalysts was investigated in the APR of xylitol showing a superior hydrocarbon formation on PtRe bimetallic catalysts compared to monometallic Pt. On the basis of the experimental data obtained, mathematical modeling of the reaction kinetics was performed. The developed model was proven to successfully describe experimental data on APR of sorbitol with good accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilization of biomass-based raw materials for the production of chemicals and materials is gaining an increasing interest. Due to the complex nature of biomass, a major challenge in its refining is the development of efficient fractionation and purification processes. Preparative chromatography and membrane filtration are selective, energy-efficient separation techniques which offer a great potential for biorefinery applications. Both of these techniques have been widely studied. On the other hand, only few process concepts that combine the two methods have been presented in the literature. The aim of this thesis was to find the possible synergetic effects provided by combining chromatographic and membrane separations, with a particular interest in biorefinery separation processes. Such knowledge could be used in the development of new, more efficient separation processes for isolating valuable compounds from complex feed solutions that are typical for the biorefinery environment. Separation techniques can be combined in various ways, from simple sequential coupling arrangements to fully-integrated hybrid processes. In this work, different types of combined separation processes as well as conventional chromatographic separation processes were studied for separating small molecules such as sugars and acids from biomass hydrolysates and spent pulping liquors. The combination of chromatographic and membrane separation was found capable of recovering high-purity products from complex solutions. For example, hydroxy acids of black liquor were successfully recovered using a novel multistep process based on ultrafiltration and size-exclusion chromatography. Unlike any other separation process earlier suggested for this challenging separation task, the new process concept does not require acidification pretreatment, and thus it could be more readily integrated into a pulp-mill biorefinery. In addition to the combined separation processes, steady-state recycling chromatography, which has earlier been studied for small-scale separations of high-value compounds only, was found a promising process alternative for biorefinery applications. In comparison to conventional batch chromatography, recycling chromatography provided higher product purity, increased the production rate and reduced the chemical consumption in the separation of monosaccharides from biomass hydrolysates. In addition, a significant further improvement in the process performance was obtained when a membrane filtration unit was integrated with recycling chromatography. In the light of the results of this work, separation processes based on combining membrane and chromatographic separations could be effectively applied for different biorefinery applications. The main challenge remains in the development of inexpensive separation materials which are resistant towards harsh process conditions and fouling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decreasing fossil fuel resources combined with an increasing world energy demand has raised an interest in renewable energy sources. The alternatives can be solar, wind and geothermal energies, but only biomass can be a substitute for the carbon–based feedstock, which is suitable for the production of transportation fuels and chemicals. However, a high oxygen content of the biomass creates challenges for the future chemical industry, forcing the development of new processes which allow a complete or selective oxygen removal without any significant carbon loss. Therefore, understanding and optimization of biomass deoxygenation processes are crucial for the future bio–based chemical industry. In this work, deoxygenation of fatty acids and their derivatives was studied over Pd/C and TiO2 supported noble metal catalysts (Pt, Pt–Re, Re and Ru) to obtain future fuel components. The 5 % Pd/C catalyst was investigated in semibatch and fixed bed reactors at 300 °C and 1.7–2 MPa of inert and hydrogen–containing atmospheres. Based on extensive kinetic studies, plausible reaction mechanisms and pathways were proposed. The influence of the unsaturation in the deoxygenation of model compounds and industrial feedstock – tall oil fatty acids – over a Pd/C catalyst was demonstrated. The optimization of the reaction conditions suppressed the formation of by–products, hence high yields and selectivities towards linear hydrocarbons and catalyst stability were achieved. Experiments in a fixed bed reactor filled with a 2 % Pd/C catalyst were performed with stearic acid as a model compound at different hydrogen–containing gas atmospheres to understand the catalyst stability under various conditions. Moreover, prolonged experiments were carried out with concentrated model compounds to reveal the catalyst deactivation. New materials were proposed for the selective deoxygenation process at lower temperatures (~200 °C) with a tunable selectivity to hydrodeoxygenation by using 4 % Pt/TiO2 or decarboxylation/decarbonylation over 4 % Ru/TiO2 catalysts. A new method for selective hydrogenation of fatty acids to fatty alcohols was demonstrated with a 4 % Re/TiO2 catalyst. A reaction pathway and mechanism for TiO2 supported metal catalysts was proposed and an optimization of the process conditions led to an increase in the formation of the desired products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pollen analyses were performed on honey and beebread from hives in apiaries located in two distinct mangrove areas dominated by Laguncularia racemosa (L.) C.F. Gaernt. One apiary was located at the edge of Guanabara Bay, Rio de Janeiro State, and the other near Maranguá Bay, Bahia State, Brazil. We investigated the contribution of nectar and pollen from mangrove vegetation to Apis mellifera L. honey and beebread stocks. Intensive visitation to this plant species by honeybees and the presence of its pollen grains in honey and beebread confirmed the importance of Laguncularia racemosa as a polliniferous and nectariferous species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants were regenerated from leaf-derived callus culture of Stylosanthes scabra, a polyploid legume tolerant to drought and adapted to acid soils. A total of 168 regenerants were planted out in Leonard jars in a complete randomized design. Nitrogen fixation and vegetative growth were indirectly evaluated by shoot dry weight, root dry weight, shoot N content and acetylene reduction activity. The results showed higher variation in the regenerants than in controls not submitted to tissue culture. Significant differences were found for all nitrogen fixation related-traits

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously discovered a long-lasting enhancement of synaptic transmission in mammal autonomic ganglia caused by immunological activation of ganglionic mast cells. Subsequent to mast cell activation, lipid and peptide mediators are released which may modulate synaptic function. In this study we determined whether some mast cell-derived mediators, prostaglandin D2 (PGD2; 1.0 µM), platelet aggregating factor (PAF; 0.3 µM) and U44619 (a thromboxane analogue; 1.0 µM), and also endothelin-1 (ET-1; 0.5 µM) induce synaptic potentiation in the guinea pig superior cervical ganglion (SCG), and compared their effects on synaptic transmission with those induced by a sensitizing antigen, ovalbumin (OVA; 10 µg/ml). The experiments were carried out on SCGs isolated from adult male guinea pigs (200-250 g) actively sensitized to OVA, maintained in oxygenated Locke solution at 37oC. Synaptic potentiation was measured through alterations of the integral of the post-ganglionic compound action potential (CAP). All agents tested caused long-term (LTP; duration ³30 min) or short-term (STP; <30 min) potentiation of synaptic efficacy, as measured by the increase in the integral of the post-ganglionic CAP. The magnitude of mediator-induced potentiation was never the same as the antigen-induced long-term potentiation (A-LTP). The agent that best mimicked the antigen was PGD2, which induced a 75% increase in CAP integral for LTP (antigen: 94%) and a 34% increase for STP (antigen: 91%). PAF-, U44619-, and ET-1-induced increases in CAP integral ranged for LTP from 34 to 47%, and for STP from 0 to 26%. These results suggest that the agents investigated may participate in the induction of A-LTP