985 resultados para 1 Sigma error
Resumo:
A novel comparator architecture is proposed for speed operation in low voltage environment. Performance comparison with a conventional regenerative comparator shows a speed-up of 41%. The proposed comparator is embedded in a continuous time sigma-delta ADC so as to reduce the quantizer delay and hence minimizes the excess loop delay problem. A performance enhancement of 1dB in the dynamic range of the ADC is achieved with this new comparator. We have implemented this ADC in a standard single-poly 8-Metal 0.13 mum UMC process. The entire system operates at 1.2 V supply providing a dynamic range of 32 dB consuming 720 muW of power and occupies an area of 0.1 mm2.
Resumo:
This paper addresses the problem of maximum margin classification given the moments of class conditional densities and the false positive and false negative error rates. Using Chebyshev inequalities, the problem can be posed as a second order cone programming problem. The dual of the formulation leads to a geometric optimization problem, that of computing the distance between two ellipsoids, which is solved by an iterative algorithm. The formulation is extended to non-linear classifiers using kernel methods. The resultant classifiers are applied to the case of classification of unbalanced datasets with asymmetric costs for misclassification. Experimental results on benchmark datasets show the efficacy of the proposed method.
Resumo:
This letter proposes a simple tuning algorithm for digital deadbeat control based on error correlation. By injecting a square-wave reference input and calculating the correlation of the control error, a gain correction for deadbeat control is obtained. The proposed solution is simple, it requires a short tuning time, and it is suitable for different DC-DC converter topologies. Simulation and experimental results on synchronous buck converters confirm the properties of the proposed tuning algorithm.
Resumo:
The synthesis, characterization, and reactivity of a chromium(0) complex bearing an amine-borane moiety (eta(6)-C(6)H(5)CH(2)NMe(2)center dot BH(3))Cr(CO)(3) (2) is reported. Photolysis of complex 2 results in the elimination of a CO ligand followed by the formation of an intramolecular sigma-borane complex (eta(1)-(eta(6)- C(6)H(5)CH(2)NMe(2)center dot BH(2)-H))Cr(CO)(2) (3). This species was characterized in solution by NMR spectroscopy. Reaction of complex 2 with photochemically generated (OC)(5)Cr(THF) affords a novel homobimetallic sigma-borane complex (OC)(3)Cr(eta(6)-C(6)H(5)CH(2)NMe(2)center dot BH(2)-H-Cr(CO)(5)) (4), wherein one of the BH moieties is bound to the chromium center in an eta(1)-fashion. The sigma-borane complex 4 was isolated in moderate to good yield (72%). The BH(3) fragment in the complexes 3 and 4 are highly dynamic involving exchange of the BH hydrogen bound to the metal with the terminal BH hydrogen atoms. The dynamics has been studied using variable-temperature NMR spectroscopy. Complexes 2 and 4 have been characterized by X-ray crystallography.
Resumo:
An all-digital on-chip clock skew measurement system via subsampling is presented. The clock nodes are sub-sampled with a near-frequency asynchronous sampling clock to result in beat signals which are themselves skewed in the same proportion but on a larger time scale. The beat signals are then suitably masked to extract only the skews of the rising edges of the clock signals. We propose a histogram of the arithmetic difference of the beat signals which decouples the relationship of clock jitter to the minimum measurable skew, and allows skews arbitrarily close to zero to be measured with a precision limited largely by measurement time, unlike the conventional XOR based histogram approach. We also analytically show that the proposed approach leads to an unbiased estimate of skew. The measured results from a 65 nm delay measurement front-end indicate that for an input skew range of +/- 1 fan-out-of-4 (FO4) delay, +/- 3 sigma resolution of 0.84 ps can be obtained with an integral error of 0.65 ps. We also experimentally demonstrate that a frequency modulation on a sampling clock maintains precision, indicating the robustness of the technique to jitter. We also show how FM modulation helps in restoring precision in case of rationally related clocks.
Resumo:
Evaluation of the probability of error in decision feedback equalizers is difficult due to the presence of a hard limiter in the feedback path. This paper derives the upper and lower bounds on the probability of a single error and multiple error patterns. The bounds are fairly tight. The bounds can also be used to select proper tap gains of the equalizer.
Resumo:
Upper bounds on the probability of error due to co-channel interference are proposed in this correspondence. The bounds are easy to compute and can be fairly tight.
Resumo:
We consider the (2 + 1) flavor Polyakov quark-meson model and study the effect of including fermion vacuum fluctuations on the thermodynamics and phase diagram. The resulting model predictions are compared to the recent QCD lattice simulations by the HotQCD and Wuppertal-Budapest collaborations. The variation of the thermodynamic quantities across the phase transition region becomes smoother. This results in better agreement with the lattice data. Depending on the value of the mass of the sigma meson, including the vacuum term results in either pushing the critical end point into higher values of the chemical potential or excluding the possibility of a critical end point altogether.
Resumo:
This paper proposes a current-error space-vector-based hysteresis controller with online computation of boundary for two-level inverter-fed induction motor (IM) drives. The proposed hysteresis controller has got all advantages of conventional current-error space-vector-based hysteresis controllers like quick transient response, simplicity, adjacent voltage vector switching, etc. Major advantage of the proposed controller-based voltage-source-inverters-fed drive is that phase voltage frequency spectrum produced is exactly similar to that of a constant switching frequency space-vector pulsewidth modulated (SVPWM) inverter. In this proposed hysteresis controller, stator voltages along alpha- and beta-axes are estimated during zero and active voltage vector periods using current errors along alpha- and beta-axes and steady-state model of IM. Online computation of hysteresis boundary is carried out using estimated stator voltages in the proposed hysteresis controller. The proposed scheme is simple and capable of taking inverter upto six-step-mode operation, if demanded by drive system. The proposed hysteresis-controller-based inverter-fed drive scheme is experimentally verified. The steady state and transient performance of the proposed scheme is extensively tested. The experimental results are giving constant frequency spectrum for phase voltage similar to that of constant frequency SVPWM inverter-fed drive.
Resumo:
Transcription is the most fundamental step in gene expression in any living organism. Various environmental cues help in the maturation of core RNA polymerase (RNAP; alpha(2)beta beta'omega) with different sigma-factors, leading to the directed recruitment of RNAP to different promoter DNA sequences. Thus it is essential to determine the sigma-factors that affect the preferential partitioning of core RNAP among various a-actors, and the role of sigma-switching in transcriptional gene regulation. Further, the macromolecular assembly of holo RNAP takes place in an extremely crowded environment within a cell, and thus far the kinetics and thermodynamics of this molecular recognition process have not been well addressed. In this study we used a site-directed bioaffinity immobilization method to evaluate the relative binding affinities of three different Escherichia coli sigma-factors to the same core RNAP with variations in temperature and ionic strength while emulating the crowded cellular milieu. Our data indicate that the interaction of core RNAP-sigma is susceptible to changes in external stimuli such as osmolytic and thermal stress, and the degree of susceptibility varies among different sigma-factors. This allows for a reversible sigma-switching from housekeeping factors to alternate sigma-factors when the organism senses a change in its physiological conditions.
Resumo:
Ensuring reliable operation over an extended period of time is one of the biggest challenges facing present day electronic systems. The increased vulnerability of the components to atmospheric particle strikes poses a big threat in attaining the reliability required for various mission critical applications. Various soft error mitigation methodologies exist to address this reliability challenge. A general solution to this problem is to arrive at a soft error mitigation methodology with an acceptable implementation overhead and error tolerance level. This implementation overhead can then be reduced by taking advantage of various derating effects like logical derating, electrical derating and timing window derating, and/or making use of application redundancy, e. g. redundancy in firmware/software executing on the so designed robust hardware. In this paper, we analyze the impact of various derating factors and show how they can be profitably employed to reduce the hardware overhead to implement a given level of soft error robustness. This analysis is performed on a set of benchmark circuits using the delayed capture methodology. Experimental results show upto 23% reduction in the hardware overhead when considering individual and combined derating factors.
Resumo:
Structural Support Vector Machines (SSVMs) have become a popular tool in machine learning for predicting structured objects like parse trees, Part-of-Speech (POS) label sequences and image segments. Various efficient algorithmic techniques have been proposed for training SSVMs for large datasets. The typical SSVM formulation contains a regularizer term and a composite loss term. The loss term is usually composed of the Linear Maximum Error (LME) associated with the training examples. Other alternatives for the loss term are yet to be explored for SSVMs. We formulate a new SSVM with Linear Summed Error (LSE) loss term and propose efficient algorithms to train the new SSVM formulation using primal cutting-plane method and sequential dual coordinate descent method. Numerical experiments on benchmark datasets demonstrate that the sequential dual coordinate descent method is faster than the cutting-plane method and reaches the steady-state generalization performance faster. It is thus a useful alternative for training SSVMs when linear summed error is used.
Resumo:
Motivated by applications to distributed storage, Gopalan et al recently introduced the interesting notion of information-symbol locality in a linear code. By this it is meant that each message symbol appears in a parity-check equation associated with small Hamming weight, thereby enabling recovery of the message symbol by examining a small number of other code symbols. This notion is expanded to the case when all code symbols, not just the message symbols, are covered by such ``local'' parity. In this paper, we extend the results of Gopalan et. al. so as to permit recovery of an erased code symbol even in the presence of errors in local parity symbols. We present tight bounds on the minimum distance of such codes and exhibit codes that are optimal with respect to the local error-correction property. As a corollary, we obtain an upper bound on the minimum distance of a concatenated code.
Resumo:
Bubble size in a gas liquid ejector has been measured using the image technique and analysed for estimation of Sauter mean diameter. The individual bubble diameter is estimated by considering the two dimensional contour of the ellipse, for the actual three dimensional ellipsoid in the system by equating the volume of the ellipsoid to that of the sphere. It is observed that the bubbles are of oblate and prolate shaped ellipsoid in this air water system. The bubble diameter is calculated based on this concept and the Sauter mean diameter is estimated. The error between these considerations is reported. The bubble size at different locations from the nozzle of the ejector is presented along with their percentage error which is around 18%.
Resumo:
This paper analyzes the error exponents in Bayesian decentralized spectrum sensing, i.e., the detection of occupancy of the primary spectrum by a cognitive radio, with probability of error as the performance metric. At the individual sensors, the error exponents of a Central Limit Theorem (CLT) based detection scheme are analyzed. At the fusion center, a K-out-of-N rule is employed to arrive at the overall decision. It is shown that, in the presence of fading, for a fixed number of sensors, the error exponents with respect to the number of observations at both the individual sensors as well as at the fusion center are zero. This motivates the development of the error exponent with a certain probability as a novel metric that can be used to compare different detection schemes in the presence of fading. The metric is useful, for example, in answering the question of whether to sense for a pilot tone in a narrow band (and suffer Rayleigh fading) or to sense the entire wide-band signal (and suffer log-normal shadowing), in terms of the error exponent performance. The error exponents with a certain probability at both the individual sensors and at the fusion center are derived, with both Rayleigh as well as log-normal shadow fading. Numerical results are used to illustrate and provide a visual feel for the theoretical expressions obtained.