962 resultados para Covariantization on the light-cone gauge
Resumo:
P>It is known that the development of diabetic complications in human pregnancy is directly related to the severity and the duration of this pathology. In this study, we developed a model of long-term type 1 diabetes to investigate its effects on the cytoarchitecture, extracellular matrix and cell proliferation during the first adaptation phase of the myometrium for pregnancy. A single dose of alloxan was used to induce diabetes in mice prior to pregnancy. To identify the temporal effects of diabetes the mice were divided into two groups: Group D1 (females that became pregnant 90-100 days after alloxan); Group D2 (females that became pregnant 100-110 days after alloxan). Uterine samples were collected after 168 h of pregnancy and processed for light and electron microscopy. In both groups the histomorphometric evaluation showed that diabetes promoted narrowing of the myometrial muscle layers which was correlated with decreased cell proliferation demonstrated by PCNA immunodetection. In D1, diabetes increased the distance between muscle layers and promoted oedema. Contrarily, in D2 the distance between muscle layers decreased and, instead of oedema, there was a markedly deposition of collagen in the myometrium. Ultrastructural analysis showed that diabetes affects the organization of the smooth muscle cells and their myofilaments. Consistently, the immunoreaction for smooth muscle alpha-actin revealed clear disorganization of the contractile apparatus in both diabetic groups. In conclusion, the present model demonstrated that long-term diabetes promotes significant alterations in the myometrium in a time-sensitive manner. Together, these alterations indicate that diabetes impairs the first phenotypic adaptation phase of the pregnant myometrium.
Resumo:
We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a theta-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man`ko states and circular squeezed states. The relation between these states and the ""classical"" trajectories is investigated, and we present numerical explorations of some semiclassical quantities. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The effect of Cr(6+) on Allium cepa root length was studied using both clean and polluted river waters. Seven series of Cr(6+)-doped polluted and non-polluted river waters were used to grow onions. Chromium concentration (Cr(6+)) of 4.2 mg L(-1)(EC(50) value), doped in clean river water caused a 50% reduction of root length, while in organically polluted samples similar root growth inhibition occurred at 12.0 mg Cr(6+) L(-1). The results suggested that there was a dislocation to higher values in toxic chromium concentration in polluted river water due to the eutrophization level of river water.
Resumo:
PhotogemA (R) is a hematoporphyrin derivative that has been used as a photosensitizer in experimental and clinical Photodynamic Therapy (PDT) in Brazil. Photosensitizers are degraded under illumination. This process, usually called photobleaching, can be monitored by decreasing in fluorescence intensities and includes the following photoprocesses: photodegradation, phototransformation, and photorelocalization. Photobleaching of hematoporphyrin-type sensitizers during illumination in aqueous solution is related not only to photodegradation but is also followed by the formation of photoproducts with a new fluorescence band at around 640-650 nm and with increased light absorption in the red spectral region at 640 nm. In this study, the influence of pH on the phototransformation process was investigated. PhotogemA (R) solutions, 40 mu g/ml, were irradiated at 514 nm with intensity of 100 mW/cm(2) for 20 min with different pH environments. The controls were performed with the samples in the absence of light. The PhotogemA (R) photodegradation is dependent on the pH. The behavior of photodegradation and photoproducts formation (monitored at 640 nm) is distinct and depends on the photosensitizer concentration. The processes of degradation and photoproducts formation were monitored with Photogemin the concentration of 40 mu g/mL since that demonstrated the best visualization of both processes. While below pH 5 the photodegradation occurred, there was no detectable presence of photoproducts. The increase of pH led to increase of photoproducts formation rate with photodegradation reaching the highest value at pH 10. The increase of photoproducts formation and instability of PhotogemA (R) from pH 6 to pH 10 are in agreement with the desired properties of an ideal photosensitizer since there are significant differences in pH between normal (7.0 < pH < 8.6) and tumor (5.8 < pH < 7.9) tissues. It is important to know the effect of pH in the process of phototransformation (degradation and photoproduct formation) of the molecule since low pH values promotes increase in the proportion of aggregates species in solution and high pH values promotes increase in the proportion of monomeric species. There must be an ideal pH interval which favors the phototransformation process that is correlated with the singlet oxygen formation responsible by the photodynamic effect. These differences in pH between normal and tumor cells can explain the presence of photosensitizers in target tumor cells, making PDT a selective therapy.
Resumo:
This paper reports the production of bismuth germanate ceramic scintillator (Bi4Ge3O12) by combustion synthesis (SHS) method, focusing on the influence of the synthesis parameters on the crystalline phases and agglomeration of the nanoparticles. The synthesis and sintering conditions were investigated through thermal analysis, X-ray diffraction as function of temperature, dilatometry and scanning electron microscopy. Well-dispersed Bi4Ge3O12 powder was accomplished by the combustion of the initial solution at pH 9, followed by low temperature calcination and milling. Sintered ceramics presented relative density of 98% and single crystalline Bi4Ge3O12 phase. The luminescent properties of the ceramics were investigated by photo- and radio- luminescence measurements and reproduced the typical Bi4Ge3O12 single-crystal spectra when excited with UV, beta and X-rays. The sintered ceramics presented light output of 4.4 x 10(3) photons/McV. (c) 2008 Published by Elsevier Ltd.
Resumo:
The different parameters used for the photoactivation process provide changes in the degree of conversion (DC%) and temperature rise (TR) of the composite resins. Thus, the purpose of this study was to evaluate the DC (%) and TR of the microhybrid composite resin photoactivated by a new generation LED. For the KBr pellet technique, the composite resin was placed into a metallic mould (1-mm thickness and 4-mm diameter) and photoactivated as follows: continuous LED LCU with different power density values (50-1000 mW/cm(2)). The measurements for the DC (%) were made in a FTIR Spectrometer Bomen (model MB-102, Quebec-Canada). The spectroscopy (FTIR) spectra for both uncured and cured samples were analyzed using an accessory for the diffuse reflectance. The measurements were recorded in the absorbance operating under the following conditions: 32 scans, 4-cm(-1) resolution, and a 300 to 4000-cm(-1) wavelength. The percentage of unreacted carbon-carbon double bonds (% C=C) was determined from the ratio of the absorbance intensities of aliphatic C=C (peak at 1638 cm(-1)) against an internal standard before and after the curing of the specimen: aromatic C-C (peak at 1608 cm-1). For the TR, the samples were made in a metallic mould (2-mm thickness and 4-mm diameter) and photoactivated during 5, 10, and 20 s. The thermocouple was attached to the multimeter to allow the temperature readings. The DC (%) and TR were calculated by the standard technique and submitted to ANOVA and Tukey`s test (p < 0.05). The degree of conversion values varied from 35.0 (+/- 1.3) to 45.0 (+/- 2.4) for 5 s, 45.0 (+/- 1.3) to 55.0 (+/- 2.4) for 10 s, and 47.0 (+/- 1.3) to 52.0 (+/- 2.4) for 20 s. For the TR, the values ranged from 0.3 (+/- 0.01) to 5.4 (+/- 0.11)degrees C for 5 s, from 0.5 (+/- 0.02) to 9.3 (+/- 0.28)degrees C for 10 s, and from 1.0 (+/- 0.06) to 15.0 (+/- 0.95)degrees C for 20 s. The power densities and irradiation times showed a significant effect on the degree of conversion and temperature rise.
Resumo:
The fabrication of controlled molecular architectures is essential for organic devices, as is the case of emission of polarized light for the information industry. In this study, we show that optimized conditions can be established to allow layer-by-layer (LbL) films of poly(p-phenylene vinylene) (PPV)+dodecylbenzenesulfonate (DBS) to be obtained with anisotropic properties. Films with five layers and converted at 110 degrees C had a dichroic ratio delta = 2.3 and order parameter r = 34%, as indicated in optical spectroscopy and emission ellipsometry data. This anisotropy was decreased with the number of layers deposited, with delta = 1.0 for a 75-layer LbL PPV + DBS film. The analysis with atomic force microscopy showed the formation of polymer clusters in a random growth process with the normalized height distribution being represented by a Gaussian function. In spite of this randomness in film growth, the self-covariance function pointed to a correlation between clusters, especially for thick films. In summary, the LbL method may be exploited to obtain both anisotropic films with polarized emission and regular, nanostructured surfaces. (c) 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 206-213, 2011
Resumo:
Films of amorphous aluminium nitride (AlN) were prepared by conventional radio frequency sputtering of an Al + Cr target in a plasma of pure nitrogen. The Cr-to-Al relative area determines the Cr content, which remained in the similar to 0-3.5 at% concentration range in this study. Film deposition was followed by thermal annealing of the samples up to 1050 degrees C in an atmosphere of oxygen and by spectroscopic characterization through energy dispersive x-ray spectrometry, photoluminescence and optical transmission measurements. According to the experimental results, the optical-electronic properties of the Cr-containing AlN films are highly influenced by both the Cr concentration and the temperature of the thermal treatments. In fact, thermal annealing at 1050 degrees C induces the development of structures that, because of their typical size and distinctive spectral characteristics, were designated by ruby microstructures (RbMSs). These RbMSs are surrounded by a N-rich environment in which Cr(3+) ions exhibit luminescent features not present in other Cr(3+)-containing systems such as ruby, emerald or alexandrite. The light emissions shown by the RbMSs and surroundings were investigated according to the Cr concentration and temperature of measurement, allowing the identification of several Cr(3+)-related luminescent lines. The main characteristics of these luminescent lines and corresponding excitation-recombination processes are presented and discussed in view of a detailed spectroscopic analysis.
Resumo:
We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E(N+1) - E(n))t). The gap E(N+1) - E(n) can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m(b) in HQET.
Resumo:
Linear covariant gauges, such as Feynman gauge, are very useful in perturbative calculations. Their non-perturbative formulation is, however, highly non-trivial. In particular, it is a challenge to define linear covariant gauges on a lattice. We consider a class of gauges in lattice gauge theory that coincides with the perturbative definition of linear covariant gauges in the formal continuum limit. The corresponding gauge-fixing procedure is described and analyzed in detail, with an application to the pure SU(2) case. In addition, results for the gluon propagator in the two-dimensional case are given. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The work presented here demonstrates the feasibility of using the single-mode fibers of an optical Internet network to deliver visible light between separate laboratories as a way to perform remote spectroscopy in the visible for teaching purposes. The coupling of a broadband light source into the single-mode fiber (SMF) and the characterization of optical losses as a function of the wavelength are discussed. Sample spectra were measured with a portable spectrometer controlled by an acquisition program developed with the LabVIEW software that allows the data to be collected and analyzed.
Resumo:
Dental composite resins possess good esthetic properties, and are currently among the most popular dental restorative materials. Both organic and inorganic phases might influence the material behavior, the filler particle features and rate are the most important factors related to improvement of the mechanical properties of resin composites. Thus, the objective of this study was to evaluate the effect of three different composite resins on the polymerization process by Vickers hardness test. The samples were prepared using three different composite resins, as follow: group I-P-60 (3M/ESPE); group II-Herculite XRV (Kerr), and group III-Durafill (Heraeus-Kulzer). The samples were made in a polytetrafluoroethylene mould, with a rectangular cavity measuring 7 mm in length, 4 mm in width, and 3 mm in thickness. The samples were photo-activated by one light-curing unit based on blue LEDs (Ultrablue III-DMC/Brazil) for 20 and 40 s of irradiation times. The Vickers hardness test was performed 24 h after the photo-activation until the standardized depth of 3 mm. The Vickers hardness mean values varied from 158.9 (+/- 0.81) to 81.4 (+/- 1.94) for P-60, from 138.7 (+/- 0.37) to 61.7 (+/- 0.24) for Herculite XRV, and from 107. 5 (+/- 0.81) to 44.5 (+/- 1.36) for Durafill composite resins photo-activated during 20 s for the 1st and 2nd mm, respectively. During 40 s of photo-activation, the Vickers hardness mean values were: from 181.0 (+/- 0.70) to 15.6 (+/- 0.29) for P-60, and from 161.8 (+/- 0.41) to 11.2 (+/- 0.17) for Herculite XRV composite resins, for the 1st and 3th mm, respectively. For Durafill composite resin the mean values varied from 120.1 (+/- 0.66) to 61.7 (+/- 0.20), for the 1st and 2nd mm, respectively. The variation coefficient (CV) was in the most of the groups lower than 1%, then the descriptive statistic analysis was used. The Vickers hardness mean values for Durafill were lower than P-60 and Herculite XRV composite resins for 20 and 40 s of irradiation time. The polymerization process was greatly affected by the composition of the composite resins.
Resumo:
DD K is an antimicrobial peptide previously isolated from the skin of the amphibian Phyllomedusa distincta. The effect of cholesterol on synthetic DD K binding to egg lecithin liposomes was investigated by intrinsic fluorescence of tryptophan residue, measurements of kinetics of 5(6)-carboxyfluorescein (CF) leakage, dynamic light scattering and isothermal titration microcalorimetry. An 8 nm blue shift of tryptophan maximum emission fluorescence was observed when DD K was in the presence of lecithin liposomes compared to the value observed for liposomes containing 43 mol% cholesterol. The rate and the extent of CF release were also significantly reduced by the presence of cholesterol. Dynamic light scattering showed that lecithin liposome size increase from 115 to 140 nm when titrated with DD K but addition of cholesterol reduces the liposome size increments. Isothermal titration microcalorimetry studies showed that DD K binding both to liposomes containing cholesterol as to liposomes devoid of it is more entropically than enthalpically favored. Nevertheless, the peptide concentration necessary to furnish an adjustable titration curve is much higher for liposomes containing cholesterol at 43 mol% (2 mmol L-1) than in its absence (93 mu mol L-1). Apparent binding constant values were 2160 and 10,000 L mol(-1), respectively. The whole data indicate that DD K binding to phosphatidylcholine liposomes is significantly affected by cholesterol, which contributes to explain the low hemolytic activity of the peptide. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
A reliable and fast sensor for in vitro evaluation of solar protection factors (SPFs) of cosmetic products, based on the photobleaching kinetics of a nanocrystalline TiO(2)/dye UV-dosimeter, has been devised. The accuracy, robustness and suitability of the new device was demonstrated by the excellent matching of the predicted and the in vivo results up to SPF 70, for four standard samples analyzed in blind. These results strongly suggest that our device can be useful for routine SPF evaluation in laboratories devoted to the development or production of cosmetic formulations, since the conventional in vitro methods tend to exhibit unacceptably high errors above SPF similar to 30 and the conventional in vivo methods tend to be expensive and exceedingly time consuming. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Photoluminescence and electroluminescence of PVK films doped with fac-[ClRe(CO)(3)(bpy)], bpy=2,2`-bipyridine, are investigated. Photoluminescence spectra of spin-coated PVK films (lambda(exc)=290 nm) exhibit a broad band centered at 405 nm. As the concentration of dopant increases, the polymer emission is quenched and a band at 555 nm appears (isosbestic point at 475 nm). In OLEDs with ITO/PEDOT:PSS/PVK/butylPBD/Al architecture doped with fac-[ClRe(CO)(3)(bpy)], the polymer host emission is completely quenched even at the lowest concentration of dopant. The electroluminescence spectra of the devices show that there is an efficient energy transfer from the host to the dopant, which exhibits a very intense emission at 580 nm. (C) 2009 Elsevier B.V. All rights reserved.