Linear covariant gauges on the lattice


Autoria(s): CUCCHIERI, Attilio; MAAS, Axel; MENDES, Tereza
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

Linear covariant gauges, such as Feynman gauge, are very useful in perturbative calculations. Their non-perturbative formulation is, however, highly non-trivial. In particular, it is a challenge to define linear covariant gauges on a lattice. We consider a class of gauges in lattice gauge theory that coincides with the perturbative definition of linear covariant gauges in the formal continuum limit. The corresponding gauge-fixing procedure is described and analyzed in detail, with an application to the pure SU(2) case. In addition, results for the gluon propagator in the two-dimensional case are given. (C) 2008 Elsevier B.V. All rights reserved.

Deutsche Forschungsgemeinschaf (DFG)

DFG[MA 3935/1-1]

Deutsche Forschungsgemeinschaf (DFG)

DFG[MA 3935/1-2]

FWF[P20330]

FWF

FAPESP[00/05047-5]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP[05/59919-7]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

CNPq[476221/2006-4]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Alexander von Humboldt Foundation (AvH)

Alexander von Humboldt Foundation

Identificador

COMPUTER PHYSICS COMMUNICATIONS, v.180, n.2, p.215-225, 2009

0010-4655

http://producao.usp.br/handle/BDPI/29968

10.1016/j.cpc.2008.09.011

http://dx.doi.org/10.1016/j.cpc.2008.09.011

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE BV

Relação

Computer Physics Communications

Direitos

restrictedAccess

Copyright ELSEVIER SCIENCE BV

Palavras-Chave #Lattice gauge theory #Gauge fixing #Covariant gauges #YANG-MILLS THEORY #CRITICAL SLOWING-DOWN #FUNDAMENTAL MODULAR REGION #LANDAU-GAUGE #INFRARED BEHAVIOR #FIXING ALGORITHMS #QUARK CONFINEMENT #GHOST PROPAGATORS #GREENS-FUNCTIONS #QCD #Computer Science, Interdisciplinary Applications #Physics, Mathematical
Tipo

article

original article

publishedVersion