988 resultados para sliding mode observer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many photovoltaic inverter designs make use of a buck based switched mode power supply (SMPS) to produce a rectified sinusoidal waveform. This waveform is then unfolded by a low frequency switching structure to produce a fully sinusoidal waveform. The Cuk SMPS could offer advantages over the buck in such applications. Unfortunately the Cuk converter is considered to be difficult to control using classical methods. Correct closed loop design is essential for stable operation of Cuk converters. Due to these stability issues, Cuk converter based designs often require stiff low bandwidth control loops. In order to achieve this stable closed loop performance, traditional designs invariably need large, unreliable electrolytic capacitors. In this paper, an inverter with a sliding mode control approach is presented which enables the designer to make use of the Cuk converters advantages, while ameliorating control difficulties. This control method allows the selection of passive components based predominantly on ripple and reliability specifications while requiring only one state reference signal. This allows much smaller, more reliable non-electrolytic capacitors to be used. A prototype inverter has been constructed and results obtained which demonstrate the design flexibility of the Cuk topology when coupled with sliding mode control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the finite-time consensus tracking control for multi-agent networks. The time-varying control input and the velocity of the leader is unknown to any follower. Only the position of the leader is known to its neighbors. We first propose a new finite-time multiple-surface sliding mode observer to estimate the leader's velocity. It is seen that the estimation error of the observer can converge to zero in a finite time. Then, we prove that finite-time consensus tracking of multi-agent networks can be achieved on a new terminal sliding mode surface. Simulation results are presented to validate the analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the integral terminal sliding mode cooperative control of multi-robot networks. Here, we first propose an integral terminal sliding mode surface for a class of first order systems. Then, we prove that finite time consensus tracking of multi-robot networks can be achieved on this integral terminal sliding mode surface. Simulation results are presented to validate the analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the leader-follower tracking problem of a four-wheel-steering robot subjected to nonlinear uncertainties. Two control laws have been developed, based on the adaptive sliding mode method and the adaptive input-output feedback linearization method. The proposed control schemes have been tested by means of simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 A new sliding mode-based learning control scheme for a class of SISO dynamic systems is developed in this paper. It is seen that, based on the most recent information on the closed-loop stability, a recursive learning chattering-free sliding mode controller can be designed to drive the closed-loop dynamics to reach the sliding mode surface in a finite time, on which the desired closed-loop dynamics with the zero-error convergence can be achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new sliding mode control technique for a class of SISO dynamic systems is presented in this chapter. It is seen that the stability status of the closed-loop system is first checked, based on the approximation of the most recent information of the first-order derivative of the Lyapunov function of the closed-loop system, an intelligent sliding mode controller can then be designed with the following intelligent features: (i) If the closed-loop system is stable, the correction term in the controller will continuously adjust control signal to drive the closed-loop trajectory to reach the sliding mode surface in a finite time and the desired closed-loop dynamics with the zero-error convergence can then be achieved on the sliding mode surface. (ii) If, however, the closed-loop system is unstable, the correction term is capable of modifying the control signal to continuously reduce the value of the derivative of the Lyapunov function from the positive to the negative and then drives the closed-loop trajectory to reach the sliding mode surface and ensures that the desired closed-loop dynamics can be obtained on the sliding mode surface. The main advantages of this new sliding mode control technique over the conventional one are that no chattering occurs in the sliding mode control system because of the recursive learning control structure; the system uncertainties are embedded in the Lipschitz-like condition and thus, no priori information on the upper and/or the lower bounds of the unknown system parameters and uncertain system dynamics is required for the controller design; the zero-error convergence can be achieved after the closed-loop dynamics reaches the sliding mode surface and remains on it. The performance for controlling a third-order linear system is evaluated in the simulation section to show the effectiveness and efficiency of the new sliding mode control technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a sliding mode-like learning control scheme is developed for a class of single input single output (SISO) complex systems. First, the Takagi-Sugeno (T-S) fuzzy modelling technique is employed to model the uncertain complex dynamical systems. Second, a sliding mode-like learning control is designed to drive the sliding variable to converge to the sliding surface, and the system states can then asymptotically converge to zero on the sliding surface. The advantages of this scheme are that: 1) the information about the uncertain system dynamics and the system model structure is not required for the design of the learning controller; 2) the closed-loop system behaves with a strong robustness with respect to uncertainties; 3) the control input is chattering-free. The sufficient conditions for the sliding mode-like learning control to stabilise the global fuzzy model are discussed in detail. A simulation example for the control of an inverted pendulum cart is presented to demonstrate the effectiveness of the proposed control scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the robust tracking control problem for a bipolar electromagnetic-levitation precise-position system. The dynamic model of the precise-position device is derived by conducting a thorough analysis on the nonlinear electromagnetic forces. Conventional sliding-mode control and terminal sliding-mode control strategies are developed to guarantee asymptotic and finite-time tracking capabilities of the closed-loop system. A lumped uncertainty estimator is proposed to estimate the system uncertainties. The estimated information is then used to construct a smooth uniformly ultimately bounded sliding-mode control. An exact estimator is also proposed to exactly estimate the unknown uncertainties in finite time. The output of the exact estimator is used to design a continuous chattering free terminal sliding-mode control. The time taken for the closed-loop system to reach zero tracking error is proven to be finite. Experiment results are presented, using a real time digital-signal-processor (DSP) based electromagnetic-levitation system to validate the analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study mainly focuses on the terminal sliding mode control (TSMC) strategy design, including an adaptive terminal sliding mode control (ATSMC) and an exact-estimator-based terminal sliding mode control (ETSMC) for second-order nonlinear dynamical systems. In the ATSMC system, an adaptive bound estimation for the lump uncertainty is proposed to ensure the system stability. On the other hand, an exact estimator is designed for exact estimating system uncertainties to solve the trouble of chattering phenomena caused by a sign function in ATSMC law in despite of the utilization of a fixed value or an adaptive tuning algorithm for the lumped uncertainty bound. The effectiveness of the proposed control schemes can be verified in numerical simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the actuator failure compensation problem of non-linear fourwheel-steering mobile robots based on vehicle kinematics, undergoing both known and unknown failures causing degenerated steering performance or wheels stuck at some observable angles. Terminal sliding mode control technique is used to guarantee the tracking stability infinite time with the presence of actuator fault. Simulation results are given to illustrate the effectiveness of the proposed control scheme. © Institution of Engineers Australia 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study addresses the design and properties of serial sliding mode control (SMC) systems for an induction servo motor drive to track periodic commands. It contains a SMC, an adaptive SMC (ASMC) and an estimator-based SMC (ESMC). The effectiveness of the proposed control systems is verifi ed by numerical simulations, and the superiority of the ESMC system is indicated in comparison with the SMC and ASMC systems.