898 resultados para heterojunction semiconductor devices
Resumo:
With the fast development of wireless communications, ZigBee and semiconductor devices, home automation networks have recently become very popular. Since typical consumer products deployed in home automation networks are often powered by tiny and limited batteries, one of the most challenging research issues is concerning energy reduction and the balancing of energy consumption across the network in order to prolong the home network lifetime for consumer devices. The introduction of clustering and sink mobility techniques into home automation networks have been shown to be an efficient way to improve the network performance and have received significant research attention. Taking inspiration from nature, this paper proposes an Ant Colony Optimization (ACO) based clustering algorithm specifically with mobile sink support for home automation networks. In this work, the network is divided into several clusters and cluster heads are selected within each cluster. Then, a mobile sink communicates with each cluster head to collect data directly through short range communications. The ACO algorithm has been utilized in this work in order to find the optimal mobility trajectory for the mobile sink. Extensive simulation results from this research show that the proposed algorithm significantly improves home network performance when using mobile sinks in terms of energy consumption and network lifetime as compared to other routing algorithms currently deployed for home automation networks.
Resumo:
This paper presents a dimmable electronic ballast designed for multiple fluorescent lamps applications. A ZCS-PWM Boost rectifier and a classical resonant Full-Bridge inverter compose this new electronic ballast, providing conditions for the obtaining of high input power-factor, and soft-switching processes for all semiconductor devices employed in the structure. The instantaneous average input current control technique is employed in the Boost rectifier. Concerning the Full-Bridge inverter, it is controlled by the imposition of phase-shift in the current processed through the sets of resonant filters + lamps, according to an adaptation in a specially designed control IC, called IR2159. Experimental results are presented in order to validate the analyses developed in this paper.
Resumo:
An electronic ballast for multiple tubular fluorescent lamp systems is presented. The proposed structure has a high value for the power factor, a dimming capability, and soft switching of the semiconductor devices operated at high frequencies. A zero-current switching pulse width modulated SEPIC converter is used as the rectifying stage and it is controlled using the instantaneous average input current technique. The inverting stage consists of classical resonant half-bridge converter with series-resonant parallel-loaded filters. The dimming control technique is based on varying the switching frequency and monitoring the phase shift of the current drained by the filters and lamps in order to establish a closed loop control. Experimental results are presented that validate the theoretical analysis.
Resumo:
An electronic ballast for multiple tubular fluorescent lamps is presented in this paper. The proposed structure features high power-factor, dimming capability, and soft-switching to the semiconductor devices operated in high frequencies. A Zero-Current-Switching - Pulse-Width-Modulated (ZCS-PWM) SEPIC converter composes the rectifying stage, controlled by the instantaneous average input current technique, performing soft-commutations and high input power factor. Regarding the inverting stage, it is composed by a classical resonant Half-Bridge converter, associated to Series Parallel-Loaded Resonant (SPLR) filters. The dimming control technique employed in this Half-Bridge inverter is based on the phase-shift in the current processed through the sets of filter + lamp. In addition, experimental results are shown in order to validate the developed analysis.
Resumo:
This paper proposes a bridgeless boost interleaved PFC (power factor correction) converter with variable duty cycle control. The application of bridgeless technique causes reduction of conduction losses, while the interleaving technique of converters cells allows division of efforts in semiconductor devices and reduction of weight and volume of the input EMI filter. The use of variable duty cycle control has the functions of regulating the output voltage and eliminating the low order harmonic components that appears in the input current of the common interleaved power factor converters working in Discontinuous Conduction Mode (DCM). The simulation results of the proposed converter presented high power factor and a good transient response in relation to the output voltage regulation in presence of high load variations and supply voltage variations. © 2011 IEEE.
Resumo:
This paper presents theoretical evaluation and experimental results to the proposed bridgeless interleaved boost PFC (power factor correction) converter. The application of bridgeless technique causes reduction of conduction losses, while the interleaving technique of the converter cells allows division of the current stress in semiconductor devices and reduction of weight and volume of the input EMI filter. In each cell of the converter, the inductor current operates in discontinuous conduction mode (DCM), which eliminates turn-on switching losses and the effects of reverse recovery in semiconductors, increasing the efficiency of the converter. The experimental results show the power factor of 0.96 for employed voltage ratio and an efficiency of 95.2 % for nominal load conditions. © 2012 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we show that the electronic properties of multi-open dots structures are strongly modified by even smalt changes in their geometries. Our discussion of these effects is done in terms of the interaction among localized states (dot-like) and extended states (channel-like), from which a Fano resonance situation arises.
Resumo:
A new double channel field-effect structure based on delta-doping technology is proposed Resonant tunneling between the channels is employed to control the transport along the interface plane. A realistic simulation is performed for several temperatures. We solve the Schrodinger and Poisson equations self-consistently and have found that a large peak-to-valley ratio in the current-voltage characteristic occurs at the whole range of temperature investigated this effect indicates the potential application of this phenomenon for switching devices, where the transversal conductivity can be controlled due to the coupling between states belonging to different channels.
Resumo:
The study of ionizing radiation effects on semiconductor devices is of great relevance for the global technological development and is a necessity in some strategic areas in Brazil. This work presents preliminary results of radiation effects in MOSFETs that were exposed to 3.2 Grad radiation dose produced by a 2.6-MeV proton beam. The focus of this work was to electrically characterize a Rectangular-Gate MOSFET (RGT) and a Circular-Gate MOSFET (CGT), manufactured with the On Semiconductor 0.5 mu m standard CMOS fabrication process and to verify a suitable geometry for space applications. During the experiment, I-DS x V-GS curves were measured. After irradiation, the RGT off-state current (I-OFF) increased approximately two orders of magnitude reaching practically the same value of the I-OFF in the CGT, which only doubled its value. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Wegen der fortschreitenden Miniaturisierung von Halbleiterbauteilen spielen Quanteneffekte eine immer wichtigere Rolle. Quantenphänomene werden gewöhnlich durch kinetische Gleichungen beschrieben, aber manchmal hat eine fluid-dynamische Beschreibung Vorteile: die bessere Nutzbarkeit für numerische Simulationen und die einfachere Vorgabe von Randbedingungen. In dieser Arbeit werden drei Diffusionsgleichungen zweiter und vierter Ordnung untersucht. Der erste Teil behandelt die implizite Zeitdiskretisierung und das Langzeitverhalten einer degenerierten Fokker-Planck-Gleichung. Der zweite Teil der Arbeit besteht aus der Untersuchung des viskosen Quantenhydrodynamischen Modells in einer Raumdimension und dessen Langzeitverhaltens. Im letzten Teil wird die Existenz von Lösungen einer parabolischen Gleichung vierter Ordnung in einer Raumdimension bewiesen, und deren Langzeitverhalten studiert.
Resumo:
In this thesis a mathematical model was derived that describes the charge and energy transport in semiconductor devices like transistors. Moreover, numerical simulations of these physical processes are performed. In order to accomplish this, methods of theoretical physics, functional analysis, numerical mathematics and computer programming are applied. After an introduction to the status quo of semiconductor device simulation methods and a brief review of historical facts up to now, the attention is shifted to the construction of a model, which serves as the basis of the subsequent derivations in the thesis. Thereby the starting point is an important equation of the theory of dilute gases. From this equation the model equations are derived and specified by means of a series expansion method. This is done in a multi-stage derivation process, which is mainly taken from a scientific paper and which does not constitute the focus of this thesis. In the following phase we specify the mathematical setting and make precise the model assumptions. Thereby we make use of methods of functional analysis. Since the equations we deal with are coupled, we are concerned with a nonstandard problem. In contrary, the theory of scalar elliptic equations is established meanwhile. Subsequently, we are preoccupied with the numerical discretization of the equations. A special finite-element method is used for the discretization. This special approach has to be done in order to make the numerical results appropriate for practical application. By a series of transformations from the discrete model we derive a system of algebraic equations that are eligible for numerical evaluation. Using self-made computer programs we solve the equations to get approximate solutions. These programs are based on new and specialized iteration procedures that are developed and thoroughly tested within the frame of this research work. Due to their importance and their novel status, they are explained and demonstrated in detail. We compare these new iterations with a standard method that is complemented by a feature to fit in the current context. A further innovation is the computation of solutions in three-dimensional domains, which are still rare. Special attention is paid to applicability of the 3D simulation tools. The programs are designed to have justifiable working complexity. The simulation results of some models of contemporary semiconductor devices are shown and detailed comments on the results are given. Eventually, we make a prospect on future development and enhancements of the models and of the algorithms that we used.
Resumo:
This paper considers sub-bandgap photon absorption in an InAs/GaAs quantum dot matrix. Absorption coefficients are calculated for transitions from the extended states in the valence band to confined states in the conduction band. This completes a previous body of work in which transitions between bound states were calculated. The calculations are based on the empirical k·p Hamiltonian considering the quantum dots as parallelepipeds. The extended states may be only partially extended?in one or two dimensions?or extended in all three dimensions. It is found that extended-to-bound transitions are, in general, weaker than bound-to-bound transitions, and that the former are weaker when the initial state is extended in more coordinates. This study is of direct application to the research of intermediate band solar cells and other semiconductor devices based on light absorption in semiconductors nanostructured with quantum dots.
Resumo:
Nowadays the interest in high power semiconductor devices is growing for applications such as telemetry, lidar system or free space communications. Indeed semiconductor devices can be an alternative to solid state lasers because they are more compact and less power consuming. These characteristics are very important for constrained and/or low power supply environment such as airplanes or satellites. Lots of work has been done in the 800-1200 nm range for integrated and free space Master Oscillator Power Amplifier (MOPA) [1]-[3]. At 1.5 ?m, the only commercially available MOPA is from QPC [4]: the fibred output power is about 700 mW and the optical linewidth is 500 kHz. In this paper, we first report on the simulations we have done to determine the appropriate vertical structure and architecture for a good MOPA at 1.58 ?m (section II). Then we describe the fabrication of the devices (section III). Finally we report on the optical and electrical measurements we have done for various devices (section IV).
Resumo:
There is an urgent need for fast, non-destructive and quantitative two-dimensional dopant profiling of modern and future ultra large-scale semiconductor devices. The low voltage scanning electron microscope (LVSEM) has emerged to satisfy this need, in part, whereby it is possible to detect different secondary electron yield values (brightness in the SEM signal) from the p-type to the n-type doped regions as well as different brightness levels from the same dopant type. The mechanism that gives rise to such a secondary electron (SE) contrast effect is not fully understood, however. A review of the different models that have been proposed to explain this SE contrast is given. We report on new experiments that support the proposal that this contrast is due to the establishment of metal-to-semiconductor surface contacts. Further experiments showing the effect of instrument parameters including the electron dose, the scan speeds and the electron beam energy on the SE contrast are also reported. Preliminary results on the dependence of the SE contrast on the existence of a surface structure featuring metal-oxide semiconductor (MOS) are also reported. Copyright © 2005 John Wiley & Sons, Ltd.